scispace - formally typeset
Search or ask a question

Showing papers by "Detlef Weigel published in 2018"


Journal ArticleDOI
TL;DR: This study resolves controversial areas of the Oryza phylogeny, showing a complex history of introgression among different chromosomes in the young ‘AA’ subclade containing the two domesticated species and announcing many new haplotypes of potential use for future crop protection.
Abstract: The genus Oryza is a model system for the study of molecular evolution over time scales ranging from a few thousand to 15 million years. Using 13 reference genomes spanning the Oryza species tree, we show that despite few large-scale chromosomal rearrangements rapid species diversification is mirrored by lineage-specific emergence and turnover of many novel elements, including transposons, and potential new coding and noncoding genes. Our study resolves controversial areas of the Oryza phylogeny, showing a complex history of introgression among different chromosomes in the young 'AA' subclade containing the two domesticated species. This study highlights the prevalence of functionally coupled disease resistance genes and identifies many new haplotypes of potential use for future crop protection. Finally, this study marks a milestone in modern rice research with the release of a complete long-read assembly of IR 8 'Miracle Rice', which relieved famine and drove the Green Revolution in Asia 50 years ago.

365 citations


Journal ArticleDOI
TL;DR: It is demonstrated that even when the purpose is to understand complex structural variation at a single region of the genome, complete genome assembly is becoming the simplest way to achieve this goal.
Abstract: The handheld Oxford Nanopore MinION sequencer generates ultra-long reads with minimal cost and time requirements, which makes sequencing genomes at the bench feasible. Here, we sequence the gold standard Arabidopsis thaliana genome (KBS-Mac-74 accession) on the bench with the MinION sequencer, and assemble the genome using typical consumer computing hardware (4 Cores, 16 Gb RAM) into chromosome arms (62 contigs with an N50 length of 12.3 Mb). We validate the contiguity and quality of the assembly with two independent single-molecule technologies, Bionano optical genome maps and Pacific Biosciences Sequel sequencing. The new A. thaliana KBS-Mac-74 genome enables resolution of a quantitative trait locus that had previously been recalcitrant to a Sanger-based BAC sequencing approach. In summary, we demonstrate that even when the purpose is to understand complex structural variation at a single region of the genome, complete genome assembly is becoming the simplest way to achieve this goal.

250 citations


Journal ArticleDOI
TL;DR: Using geo-environmental models, the authors predicted that Central European, but not Mediterranean, populations might lag behind in adaptation by the end of the twenty-first century and predicted the future genetic maladaptation of Central European populations.
Abstract: As Earth is currently experiencing dramatic climate change, it is of critical interest to understand how species will respond to it. The chance of a species withstanding climate change is likely to depend on the diversity within the species and, particularly, whether there are sub-populations that are already adapted to extreme environments. However, most predictive studies ignore that species comprise genetically diverse individuals. We have identified genetic variants in Arabidopsis thaliana that are associated with survival of an extreme drought event—a major consequence of global warming. Subsequently, we determined how these variants are distributed across the native range of the species. Genetic alleles conferring higher drought survival showed signatures of polygenic adaptation and were more frequently found in Mediterranean and Scandinavian regions. Using geo-environmental models, we predicted that Central European, but not Mediterranean, populations might lag behind in adaptation by the end of the twenty-first century. Further analyses showed that a population decline could nevertheless be compensated by natural selection acting efficiently over standing variation or by migration of adapted individuals from populations at the margins of the species’ distribution. These findings highlight the importance of within-species genetic heterogeneity in facilitating an evolutionary response to a changing climate. The ability of a species to adapt to climate change depends on its genetic diversity. Here, based on the geographic distribution of genetic variants associated with drought resistance in Arabidopsis thaliana, the authors predict the future genetic maladaptation of Central European populations.

144 citations


Journal ArticleDOI
TL;DR: A multi-year, multi-site survey of Pseudomonas in its natural host Arabidopsis thaliana revealed this lineage to have diversified approximately 300,000 years ago, containing dozens of genetically identifiable pathogenic sublineages.

118 citations


Journal ArticleDOI
TL;DR: This work showcases how, by applying genomics methods to a combination of modern and historic samples from colonizing lineages, it can directly study new mutations and their potential evolutionary relevance.
Abstract: By following the evolution of populations that are initially genetically homogeneous, much can be learned about core biological principles. For example, it allows for detailed studies of the rate of emergence of de novo mutations and their change in frequency due to drift and selection. Unfortunately, in multicellular organisms with generation times of months or years, it is difficult to set up and carry out such experiments over many generations. An alternative is provided by "natural evolution experiments" that started from colonizations or invasions of new habitats by selfing lineages. With limited or missing gene flow from other lineages, new mutations and their effects can be easily detected. North America has been colonized in historic times by the plant Arabidopsis thaliana, and although multiple intercrossing lineages are found today, many of the individuals belong to a single lineage, HPG1. To determine in this lineage the rate of substitutions-the subset of mutations that survived natural selection and drift-, we have sequenced genomes from plants collected between 1863 and 2006. We identified 73 modern and 27 herbarium specimens that belonged to HPG1. Using the estimated substitution rate, we infer that the last common HPG1 ancestor lived in the early 17th century, when it was most likely introduced by chance from Europe. Mutations in coding regions are depleted in frequency compared to those in other portions of the genome, consistent with purifying selection. Nevertheless, a handful of mutations is found at high frequency in present-day populations. We link these to detectable phenotypic variance in traits of known ecological importance, life history and growth, which could reflect their adaptive value. Our work showcases how, by applying genomics methods to a combination of modern and historic samples from colonizing lineages, we can directly study new mutations and their potential evolutionary relevance.

100 citations


Journal ArticleDOI
TL;DR: Adaptation to climate in Arabidopsis thaliana is associated with local strains that substantially deviate from the values predicted by MST, suggesting that variation in allometry contributes to local adaptation to contrasting environments and helps reconcile past debates on the origin of allometric scaling in biology.
Abstract: Seed plants vary tremendously in size and morphology; however, variation and covariation in plant traits may be governed, at least in part, by universal biophysical laws and biological constants. Metabolic scaling theory (MST) posits that whole-organismal metabolism and growth rate are under stabilizing selection that minimizes the scaling of hydrodynamic resistance and maximizes the scaling of resource uptake. This constrains variation in physiological traits and in the rate of biomass accumulation, so that they can be expressed as mathematical functions of plant size with near-constant allometric scaling exponents across species. However, the observed variation in scaling exponents calls into question the evolutionary drivers and the universality of allometric equations. We have measured growth scaling and fitness traits of 451 Arabidopsis thaliana accessions with sequenced genomes. Variation among accessions around the scaling exponent predicted by MST was correlated with relative growth rate, seed production, and stress resistance. Genomic analyses indicate that growth allometry is affected by many genes associated with local climate and abiotic stress response. The gene with the strongest effect, PUB4, has molecular signatures of balancing selection, suggesting that intraspecific variation in growth scaling is maintained by opposing selection on the trade-off between seed production and abiotic stress resistance. Our findings suggest that variation in allometry contributes to local adaptation to contrasting environments. Our results help reconcile past debates on the origin of allometric scaling in biology and begin to link adaptive variation in allometric scaling to specific genes.

68 citations


Journal ArticleDOI
TL;DR: The AraGWAS Catalog is provided, a publicly available, manually curated and standardized GWAS catalog for all publicly available phenotypes from the central A. thaliana phenotype repository, AraPheno, and provides various features to easily access, download and visualize the results and summary statistics across GWAS.
Abstract: The abundance of high-quality genotype and phenotype data for the model organism Arabidopsis thaliana enables scientists to study the genetic architecture of many complex traits at an unprecedented level of detail using genome-wide association studies (GWAS). GWAS have been a great success in A. thaliana and many SNP-trait associations have been published. With the AraGWAS Catalog (https://aragwas.1001genomes.org) we provide a publicly available, manually curated and standardized GWAS catalog for all publicly available phenotypes from the central A. thaliana phenotype repository, AraPheno. All GWAS have been recomputed on the latest imputed genotype release of the 1001 Genomes Consortium using a standardized GWAS pipeline to ensure comparability between results. The catalog includes currently 167 phenotypes and more than 222 000 SNP-trait associations with P < 10-4, of which 3887 are significantly associated using permutation-based thresholds. The AraGWAS Catalog can be accessed via a modern web-interface and provides various features to easily access, download and visualize the results and summary statistics across GWAS.

62 citations


Journal ArticleDOI
TL;DR: It is reported that organ-specific epigenetic imprints in Arabidopsis thaliana can be partially maintained during asexual propagation from somatic cells in which a zygotic program is artificially induced.
Abstract: Plants differ from animals in their capability to easily regenerate fertile adult individuals from terminally differentiated cells This unique developmental plasticity is commonly observed in nature, where many species can reproduce asexually through the ectopic initiation of organogenic or embryogenic developmental programs While organ-specific epigenetic marks are not passed on during sexual reproduction, the fate of epigenetic marks during asexual reproduction and the implications for clonal progeny remain unclear Here we report that organ-specific epigenetic imprints in Arabidopsis thaliana can be partially maintained during asexual propagation from somatic cells in which a zygotic program is artificially induced The altered marks are inherited even over multiple rounds of sexual reproduction, becoming fixed in hybrids and resulting in heritable molecular and physiological phenotypes that depend on the identity of the founder tissue Consequently, clonal plants display distinct interactions with beneficial and pathogenic microorganisms Our results demonstrate how novel phenotypic variation in plants can be unlocked through altered inheritance of epigenetic marks upon asexual propagation

56 citations


Journal ArticleDOI
TL;DR: The SM series of CRISPR/Cas9 vectors enables the rapid generation of transgene-free, genome edited plants for a diversity of functional studies.
Abstract: Our knowledge of natural genetic variation is increasing at an extremely rapid pace, affording an opportunity to come to a much richer understanding of how effects of specific genes are dependent on the genetic background. To achieve a systematic understanding of such GxG interactions, it is desirable to develop genome editing tools that can be rapidly deployed across many different genetic varieties. We present an efficient CRISPR/Cas9 toolbox of super module (SM) vectors. These vectors are based on a previously described fluorescence protein marker expressed in seeds allowing identification of transgene-free mutants. We have used this vector series to delete genomic regions ranging from 1.7 to 13 kb in different natural accessions of the wild plant Arabidopsis thaliana. Based on results from 53 pairs of sgRNAs targeting individual nucleotide binding site leucine-rich repeat (NLR) genes, we provide a comprehensive overview of obtaining heritable deletions. The SM series of CRISPR/Cas9 vectors enables the rapid generation of transgene-free, genome edited plants for a diversity of functional studies.

52 citations


Journal ArticleDOI
TL;DR: Results show not only that miR773 mediates pathogen-associated molecular pattern-triggered immunity but also demonstrate that suppression ofmiR773 activity is an effective approach to improve disease resistance in Arabidopsis plants.
Abstract: MicroRNAs (miRNAs) are 21- to 24-nucleotide short noncoding RNAs that trigger gene silencing in eukaryotes. In plants, miRNAs play a crucial role in a wide range of developmental processes and adaptive responses to abiotic and biotic stresses. In this work, we investigated the role of miR773 in modulating resistance to infection by fungal pathogens in Arabidopsis thaliana. Interference with miR773 activity by target mimics (in MIM773 plants) and concomitant upregulation of the miR773 target gene METHYLTRANSFERASE 2 (MET2) increased resistance to infection by necrotrophic (Plectosphaerrella cucumerina) and hemibiotrophic (Fusarium oxysporum, Colletototrichum higginianum) fungal pathogens. By contrast, both MIR773 overexpression and MET2 silencing enhanced susceptibility to pathogen infection. Upon pathogen challenge, MIM773 plants accumulated higher levels of callose and reactive oxygen species than wild-type plants. Stronger induction of defense-gene expression was also observed in MIM773 plants in response to fungal infection. Expression analysis revealed an important reduction in miR773 accumulation in rosette leaves of plants upon elicitor perception and pathogen infection. Taken together, our results show not only that miR773 mediates pathogen-associated molecular pattern-triggered immunity but also demonstrate that suppression of miR773 activity is an effective approach to improve disease resistance in Arabidopsis plants.

47 citations


Journal ArticleDOI
TL;DR: The method proposed here is an application of automated computerization of plant images with ImageJ, and subsequent statistical modeling in R that allows plant biologists to measure growth dynamics and fruit number in hundreds of individuals with simple computing steps that can be repeated and adjusted to a wide range of laboratory conditions.
Abstract: The model species Arabidopsis thaliana has extensive resources to investigate intraspecific trait variability and the genetic bases of ecologically relevant traits However, the cost of equipment and software required for high-throughput phenotyping is often a bottleneck for large-scale studies, such as mutant screening or quantitative genetics analyses Simple tools are needed for the measurement of fitness-related traits, like relative growth rate and fruit production, without investment in expensive infrastructures Here, we describe methods that enable the estimation of biomass accumulation and fruit number from the analysis of rosette and inflorescence images taken with a regular camera We developed two models to predict plant dry mass and fruit number from the parameters extracted with the analysis of rosette and inflorescence images Predictive models were trained by sacrificing growing individuals for dry mass estimation, and manually measuring a fraction of individuals for fruit number at maturity Using a cross-validation approach, we showed that quantitative parameters extracted from image analysis predicts more 90% of both plant dry mass and fruit number When used on 451 natural accessions, the method allowed modeling growth dynamics, including relative growth rate, throughout the life cycle of various ecotypes Estimated growth-related traits had high heritability (065 < H2 < 093), as well as estimated fruit number (H2 = 068) In addition, we validated the method for estimating fruit number with rev5, a mutant with increased flower abortion The method we propose here is an application of automated computerization of plant images with ImageJ, and subsequent statistical modeling in R It allows plant biologists to measure growth dynamics and fruit number in hundreds of individuals with simple computing steps that can be repeated and adjusted to a wide range of laboratory conditions It is thus a flexible toolkit for the measurement of fitness-related traits in large populations of a model species

Journal ArticleDOI
TL;DR: This regional collection of 174 highly diverse Arabidopsis thaliana accessions from the Iberian Peninsula provides an excellent resource to address the spatial complexity of climate adaptation in annual plants.
Abstract: Current global change is fueling an interest to understand the genetic and molecular mechanisms of plant adaptation to climate. In particular, altered flowering time is a common strategy for escape from unfavourable climate temperature. In order to determine the genomic bases underlying flowering time adaptation to this climatic factor, we have systematically analysed a collection of 174 highly diverse Arabidopsis thaliana accessions from the Iberian Peninsula. Analyses of 1.88 million single nucleotide polymorphisms provide evidence for a spatially heterogeneous contribution of demographic and adaptive processes to geographic patterns of genetic variation. Mountains appear to be allele dispersal barriers, whereas the relationship between flowering time and temperature depended on the precise temperature range. Environmental genome-wide associations supported an overall genome adaptation to temperature, with 9.4% of the genes showing significant associations. Furthermore, phenotypic genome-wide associations provided a catalogue of candidate genes underlying flowering time variation. Finally, comparison of environmental and phenotypic genome-wide associations identified known (Twin Sister of FT, FRIGIDA-like 1, and Casein Kinase II Beta chain 1) and new (Epithiospecifer Modifier 1 and Voltage-Dependent Anion Channel 5) genes as candidates for adaptation to climate temperature by altered flowering time. Thus, this regional collection provides an excellent resource to address the spatial complexity of climate adaptation in annual plants.

Journal ArticleDOI
TL;DR: It is argued that these surprising results highlight the necessity to consider higher‐order regulatory context in evaluating regulatory variation and predicting its phenotypic consequences, and that the vast majority of differentially accessible sites show no underlying sequence variation.
Abstract: Variation in regulatory DNA is thought to drive phenotypic variation, evolution, and disease. Prior studies of regulatory DNA and transcription factors across animal species highlighted a fundamental conundrum: Transcription factor binding domains and cognate binding sites are conserved, while regulatory DNA sequences are not. It remains unclear how conserved transcription factors and dynamic regulatory sites produce conserved expression patterns across species. Here, we explore regulatory DNA variation and its functional consequences within Arabidopsis thaliana, using chromatin accessibility to delineate regulatory DNA genome-wide. Unlike in previous cross-species comparisons, the positional homology of regulatory DNA is maintained among A. thaliana ecotypes and less nucleotide divergence has occurred. Of the ∼50,000 regulatory sites in A. thaliana, we found that 15% varied in accessibility among ecotypes. Some of these accessibility differences were associated with extensive, previously unannotated sequence variation, encompassing many deletions and ancient hypervariable alleles. Unexpectedly, for the majority of such regulatory sites, nearby gene expression was unaffected. Nevertheless, regulatory sites with high levels of sequence variation and differential chromatin accessibility were the most likely to be associated with differential gene expression. Finally, and most surprising, we found that the vast majority of differentially accessible sites show no underlying sequence variation. We argue that these surprising results highlight the necessity to consider higher-order regulatory context in evaluating regulatory variation and predicting its phenotypic consequences.

Journal ArticleDOI
TL;DR: It is found that an NLR gene can mask the activity of an ACD6 autoimmune allele in natural A. thaliana populations, thereby linking different arms of the plant immune system.
Abstract: Plants defend themselves against pathogens by activating an array of immune responses. Unfortunately, immunity programs may also cause unintended collateral damage to the plant itself. The quantitative disease resistance gene ACCELERATED CELL DEATH 6 (ACD6) serves to balance growth and pathogen resistance in natural populations of Arabidopsis thaliana. An autoimmune allele, ACD6-Est, which strongly reduces growth under specific laboratory conditions, is found in over 10% of wild strains. There is, however, extensive variation in the strength of the autoimmune phenotype expressed by strains with an ACD6-Est allele, indicative of genetic modifiers. Quantitative genetic analysis suggests that ACD6 activity can be modulated in diverse ways, with different strains often carrying different large-effect modifiers. One modifier is SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1), located in a highly polymorphic cluster of nucleotide-binding domain and leucine-rich repeat (NLR) immune receptor genes, which are prototypes for qualitative disease resistance genes. Allelic variation at SNC1 correlates with ACD6-Est activity in multiple accessions, and a common structural variant affecting the NL linker sequence can explain differences in SNC1 activity. Taken together, we find that an NLR gene can mask the activity of an ACD6 autoimmune allele in natural A. thaliana populations, thereby linking different arms of the plant immune system.

Journal ArticleDOI
TL;DR: A new mutant allele of the F-box gene HAWAIIAN SKIRT (HWS; At3G61590), hws-5, is identified as a suppressor of the MIM156-induced developmental and molecular phenotypes, proposing HWS as a novel, F-boxes dependent factor involved in miRNA function.
Abstract: As regulators of gene expression in multicellular organisms, microRNAs (miRNAs) are crucial for growth and development. Although a plethora of factors involved in their biogenesis and action in Arabidopsis (Arabidopsis thaliana) has been described, these processes and their fine-tuning are not fully understood. Here, we used plants expressing an artificial miRNA target mimic (MIM) to screen for negative regulators of miR156. We identified a new mutant allele of the F-box gene HAWAIIAN SKIRT (HWS; At3G61590), hws-5, as a suppressor of the MIM156-induced developmental and molecular phenotypes. In hws plants, levels of some endogenous miRNAs are increased and their mRNA targets decreased. Plants constitutively expressing full-length HWS—but not a truncated version lacking the F-box domain—display morphological and molecular phenotypes resembling those of mutants defective in miRNA biogenesis and activity. In combination with such mutants, hws loses its delayed floral organ abscission (“skirt”) phenotype, suggesting epistasis. Also, the hws transcriptome profile partially resembles those of well-known miRNA mutants hyl1-2, se-3, and ago1-27, pointing to a role in a common pathway. We thus propose HWS as a novel, F-box dependent factor involved in miRNA function.

Posted ContentDOI
21 Feb 2018-bioRxiv
TL;DR: It is shown that adaptation to climate in Arabidopsis thaliana is associated with local strains that substantially deviate from the values predicted by MST, which highlights the evolutionary role of allometric diversification and helps establish the physiological bases of plant adaptation to contrasting environments.
Abstract: Seed plants vary tremendously in size and morphology. However, variation and covariation between plant traits may at least in part be governed by universal biophysical laws and biological constants. Metabolic Scaling Theory (MST) posits that whole-organismal metabolism and growth rate are under stabilizing selection that minimizes the scaling of hydrodynamic resistance and maximizes the scaling of resource uptake. This constrains variation in physiological traits and in the rate of biomass accumulation, so that they can be expressed as mathematical functions of plant size with near constant allometric scaling exponents across species. However, observed variation in scaling exponents questions the evolutionary drivers and the universality of allometric equations. We have measured growth scaling and fitness traits of 451 Arabidopsis thaliana accessions with sequenced genomes. Variation among accessions around the scaling exponent predicted by MST correlated with relative growth rate, seed production and stress resistance. Genomic analyses indicate that growth allometry is affected by many genes associated with local climate and abiotic stress response. The gene with the strongest effect, PUB4, has molecular signatures of balancing selection, suggesting that intraspecific variation in growth scaling is maintained by opposing selection on the trade-off between seed production and abiotic stress resistance. Our findings support a core MST prediction and suggest that variation in allometry contributes to local adaptation to contrasting environments. Our results help reconcile past debates on the origin of allometric scaling in biology, and begin to link adaptive variation in allometric scaling to specific genes.

Journal ArticleDOI
TL;DR: This study provides novel insights into how previously unknown mechanisms controlling shoot branching and stem growth can result in hybrid incompatibility.
Abstract: Summary Hybrids occasionally exhibit genetic interactions resulting in reduced fitness in comparison to their parents. Studies of Arabidopsis thaliana have highlighted the role of immune conflicts, but less is known about the role of other factors in hybrid incompatibility in plants. Here, we present a new hybrid incompatibility phenomenon in this species. We have characterized a new case of F1 hybrid incompatibility from a cross between the A. thaliana accessions Krotzenburg-0 (Kro-0) and BG-5, by conducting transcript, metabolite and hormone analyses, and identified the causal loci through genetic mapping. The F1 hybrids showed arrested growth of the main stem, altered shoot architecture, and altered concentrations of hormones in comparison to parents. The F1 phenotype could be rescued in a developmental-stage-dependent manner by shifting to a higher growth temperature. These F1 phenotypes were linked to two loci, one on chromosome 2 and one on chromosome 3. The F2 generation segregated plants with more severe phenotypes which were linked to the same loci as those in the F1. This study provides novel insights into how previously unknown mechanisms controlling shoot branching and stem growth can result in hybrid incompatibility.

Posted ContentDOI
08 Jun 2018-bioRxiv
TL;DR: Climate-driven selection at the genetic level is studied by measuring fitness of 517 Arabidopsis thaliana lines grown in rainfall-manipulation experiments in Spain and Germany, suggesting that selection driven by local climate would be strongest in the Mediterranean and Western Siberia — the edge of the species’ environmental limits — and weakest in Central Europe.
Abstract: Through the lens of evolution, climate change is an agent of directional selection that forces populations to change and adapt, or face extinction. Current assessments of the risks associated with climate change, however, do not typically take into account that natural selection can dramatically impact the genetic makeup of populations. We made use of extensive genome information in Arabidopsis thaliana and measured how rainfall-manipulation affected the fitness of 517 natural lines grown in Spain and Germany. This allowed us to directly infer selection at the genetic level. Natural selection was particularly strong in the hot-dry Spanish location, killing 63% of lines and significantly changing the frequency of ~5% of all genome-wide variants. A significant proportion of this selection over variants could be predicted from climate (mis)match between experimental sites and the geographic areas of where variants are found (R2=29-52%). Field-validated predictions across the species range indicated that Mediterranean and Western Siberia populations -- at the edges of the species' environmental limits -- currently experience the strongest climate-driven selection, and Central Europeans the weakest. With rapidly increasing droughts and rising temperatures in Europe, we forecast a wave of directional selection moving North, putting many native A. thaliana populations at evolutionary risk.

Journal ArticleDOI
TL;DR: This article was not made open access when initially published online, which was corrected before print publication.
Abstract: This article was not made open access when initially published online, which was corrected before print publication. In addition, ORCID links were missing for 12 authors and have been added to the HTML and PDF versions of the article.

Posted ContentDOI
30 Aug 2018-bioRxiv
TL;DR: This study evaluated a model of physiological dominance proposed by Sewall Wright to explain the non-additive inheritance of metabolic fluxes at the cellular level and suggested that the emergence of heterosis is an intrinsic property of non-linear relationships between traits.
Abstract: Heterosis describes the phenotypic superiority of hybrids over their parents in traits related to fitness. Understanding and predicting non-additive inheritance such as heterosis is crucial for evolutionary biology, as well as for plant and animal breeding. However, the physiological bases of heterosis remain debated. Moreover, empirical data in various species have shown that diverse genetic and molecular mechanisms are likely to explain heterosis, making it difficult to predict its emergence and amplitude from parental genotypes alone. In this study, we evaluated a model of physiological dominance proposed by Sewall Wright to explain the non-additive inheritance of metabolic fluxes at the cellular level. We used 450 hybrids derived from crosses among natural inbred accessions of Arabidopsis thaliana to test model of Wright for two fitness-related traits at the whole-plant level: growth rate and fruit number. We found that allometric relationships between traits constrain phenotypic variation in hybrids and inbreds to a similar extent. These allometric relationships behave predictably, in a non-linear manner, explaining up to 75% of heterosis amplitude, while genetic distance among parents at best explains 7%. Thus, our findings are consistent with Wright9s model of physiological dominance on plant performance, and suggest that the emergence of heterosis is an intrinsic property of non-linear relationships between traits. Furthermore, our study highlights the potential of a geometric approach of phenotypic relationships for predicting heterosis of two major components of crop productivity and yield.

Posted ContentDOI
26 Nov 2018-bioRxiv
TL;DR: It is found that ancestral variation preferentially persists at immunity related loci, and that the same collection of alleles has been maintained in different lineages that have been separated for several million years.
Abstract: Genetic drift is expected to remove polymorphism from populations over long periods of time, with the rate of polymorphism loss being accelerated when species experience strong reductions in population size. Adaptive forces that maintain genetic variation in populations, or balancing selection, might counteract this process. To understand the extent to which natural selection can drive the retention of genetic diversity, we document genomic variability after two parallel species-wide bottlenecks in the genus Capsella. We find that ancestral variation preferentially persists at immunity related loci, and that the same collection of alleles has been maintained in different lineages that have been separated for several million years. Our data point to long term balancing selection as an important factor shaping the genetics of immune systems in plants and as the predominant driver of genomic variability after a population bottleneck.

Posted ContentDOI
19 Feb 2018-bioRxiv
TL;DR: It is shown that plants asexually propagated via induction of a zygotic developmental program do not fully reset cell-specific epigenetic imprints, and these imprints are instead inherited even over multiple rounds of sexual reproduction, resulting in heritable molecular and physiological phenotypes that depend on the founder cell used.
Abstract: Plants differ from animals in their capability to easily regenerate fertile adult individuals from terminally differentiated cells. This unique developmental plasticity is commonly observed in nature where many species can reproduce asexually through the ectopic initiation of organogenic or embryogenic developmental programs. However, it is not currently known if this developmental reprogramming is coupled to a global epigenomic resetting, or what impact it has on the phenotype of the clonal progeny. Here we show that plants asexually propagated via induction of a zygotic developmental program do not fully reset cell-specific epigenetic imprints. These imprints are instead inherited even over multiple rounds of sexual reproduction, becoming fixed in hybrids and resulting in heritable molecular and physiological phenotypes that depend on the founder cell used. Our results demonstrate how novel phenotypic variation in plants can be unlocked through the incomplete reprogramming of cell-specific epigenetic marks during asexual propagation.

Posted ContentDOI
21 Feb 2018-bioRxiv
TL;DR: An automated high-throughput imaging coupled with micro-computers that enables large phenotypic screening for genome-wide association studies and stress experiments is described.
Abstract: The model species Arabidopsis thaliana has extensive resources to investigate intraspecific trait variability and the genetic bases of ecologically relevant traits. However, the cost of equipment and software required for high-throughput phenotyping is often a bottleneck for large-scale studies, such as mutant screening or quantitative genetics analyses. Simple tools are needed for the measurement of fitness-related traits, like relative growth rate and fruit production, without investment in expensive infrastructures. Here, we describe methods that enable the estimation of biomass accumulation and fruit number from the analysis of rosette and inflorescence images taken with a regular camera. We developed two models to predict plant dry mass and fruit number from the parameters extracted with the analysis of rosette and inflorescence images. Predictive models were trained by sacrificing growing individuals for dry mass estimation, and manually measuring a fraction of individuals for fruit number at maturity. Using a cross-validation approach, we show that quantitative parameters extracted from image analysis predicts more 90% of both plant dry mass and fruit number. When used on 451 natural accessions, the method allowed modelling growth dynamics, including relative growth rate, throughout the life cycle of various ecotypes. Estimated growth-related traits had high heritability (0.65

Posted ContentDOI
13 Apr 2018-bioRxiv
TL;DR: It is found that an NLR gene can mask the activity of an ACD6 autoimmune allele in natural A. thaliana populations, thereby linking different arms of the plant immune system.
Abstract: Plants defend themselves against pathogens by activating an array of immune responses. Unfortunately, immunity programs may also cause unintended collateral damage to the plant itself. The quantitative disease resistance gene ACCELERATED CELL DEATH 6 (ACD6) serves as a nexus for the trade-off between growth and pathogen resistance in wild populations of Arabidopsis thaliana. An autoimmune allele, ACD6-Est, first identified in the natural accession Est-1, is found in over 10% of wild strains, even though it causes a clear fitness penalty under optimal growth conditions. There is, however, extensive variation in the strength of the autoimmune phenotype expressed by strains with an ACD6-Est allele, indicative of genetic modifiers. Quantitative genetic analysis suggests that the population genetic basis of ACD6 modulation is complex, with different strains often carrying different large-effect modifiers. One modifier is SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1), located in a highly polymorphic cluster of nucleotide-binding domain and leucine-rich repeat (NLR) immune receptor genes, which are prototypes for qualitative disease resistance genes. Allelic variation at SNC1 correlates with ACD6-Est activity in multiple accessions, and a common structural variant affecting the NL linker sequence can explain differences in SNC1 activity. Taken together, we find that an NLR gene can mask the activity of an ACD6 autoimmune allele in natural A. thaliana populations, thereby linking different arms of the plant immune system.

Posted ContentDOI
30 Jan 2018-bioRxiv
TL;DR: The results suggest that the selective pressures acting on a plant pathogen in wild hosts may be more complex than those in agricultural systems.
Abstract: Crop disease outbreaks are often associated with clonal expansions of single pathogenic lineages. To determine whether similar boom-and-bust scenarios hold for wild plant pathogens, we carried out a multi-year multi-site survey of Pseudomonas in the natural host Arabidopsis thaliana. The most common Pseudomonas lineage corresponded to a pathogenic clade present in all sites. Sequencing of 1,524 Pseudomonas genomes revealed this lineage to have diversified approximately 300,000 years ago, containing dozens of genetically distinct pathogenic sublineages. These sublineages have expanded in parallel within the same populations and are differentiated both at the level of gene content and disease phenotype. Such coexistence of diverse sublineages indicates that in contrast to crop systems, no single strain has been able to overtake these A. thaliana populations in the recent past. Our results suggest that the selective pressures acting on a plant pathogen in wild hosts may be more complex than those in agricultural systems.

Posted ContentDOI
15 Jan 2018-bioRxiv
TL;DR: A multi-year multi-site 16S rDNA survey of Pseudomonas in the natural host Arabidopsis thaliana revealed this lineage to have diversified approximately 300,000 years ago, containing dozens of genetically distinct pathogenic sublineages.
Abstract: Crop disease outbreaks are commonly associated with the clonal expansion of single pathogenic lineages. To determine whether similar boom-and-bust scenarios hold for wild plant pathogens, we carried out a multi-year multi-site 16S rDNA survey of Pseudomonas in the natural host Arabidopsis thaliana. The most common Pseudomonas lineage corresponded to a pathogenic clade present in all sites. Sequencing of 1,524 Pseudomonas genomes revealed this lineage to have diversified approximately 300,000 years ago, containing dozens of genetically distinct pathogenic sublineages. The coexistence of diverse sublineages suggests that in contrast to crop systems, no single strain has been able to overtake these A. thaliana populations in the recent past. An important question for the future is how the maintenance of pathogenic diversity is influenced by host genetic variation versus an environment with more microbial and abiotic heterogeneity than in agricultural systems.

Posted ContentDOI
21 Feb 2018-bioRxiv
TL;DR: In this paper, the authors developed two models to predict plant dry mass and fruit number from the parameters extracted with the analysis of rosette and inflorescence images taken with a regular camera.
Abstract: Background The model species Arabidopsis thaliana has extensive resources to investigate intraspecific trait variability and the genetic bases of ecologically relevant traits. However, the cost of equipment and software required for high-throughput phenotyping is often a bottleneck for large-scale studies, such as mutant screening or quantitative genetics analyses. Simple tools are needed for the measurement of fitness-related traits, like relative growth rate and fruit production, without investment in expensive infrastructures. Here, we describe methods that enable the estimation of biomass accumulation and fruit number from the analysis of rosette and inflorescence images taken with a regular camera. Results We developed two models to predict plant dry mass and fruit number from the parameters extracted with the analysis of rosette and inflorescence images. Predictive models were trained by sacrificing growing individuals for dry mass estimation, and manually measuring a fraction of individuals for fruit number at maturity. Using a cross-validation approach, we showed that quantitative parameters extracted from image analysis predicts more 90% of both plant dry mass and fruit number. When used on 451 natural accessions, the method allowed modelling growth dynamics, including relative growth rate, throughout the life cycle of various ecotypes. Estimated growth-related traits had high heritability (0.65 Conclusions The method we propose here is based on the automated computerization of plant images with ImageJ, and subsequent statistical modelling in R. It allows plant biologists to measure growth dynamics and fruit number in hundreds of individuals with simple computing steps that can be repeated and adjusted to a wide range of laboratory conditions. It is thus a flexible toolkit for the measurement of fitness-related traits in large plant populations.