scispace - formally typeset
Search or ask a question
Author

Detlef Weigel

Bio: Detlef Weigel is an academic researcher from Max Planck Society. The author has contributed to research in topics: Arabidopsis & Arabidopsis thaliana. The author has an hindex of 142, co-authored 516 publications receiving 84670 citations. Previous affiliations of Detlef Weigel include Ludwig Maximilian University of Munich & California Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper , the role of PICLN in pre-mRNA splicing and in mediating plant adaptation to daily and seasonal fluctuations in environmental conditions has been investigated in both humans and Arabidopsis.
Abstract: Plants undergo transcriptome reprogramming to adapt to daily and seasonal fluctuations in light and temperature conditions. While most efforts have focused on the role of master transcription factors, the importance of splicing factors modulating these processes is now emerging. Efficient pre-mRNA splicing depends on proper spliceosome assembly, which in plants and animals requires the methylosome complex. Ion Chloride nucleotide-sensitive protein (PICLN) is part of the methylosome complex in both humans and Arabidopsis (Arabidopsis thaliana), and we show here that the human PICLN ortholog rescues phenotypes of Arabidopsis picln mutants. Altered photomorphogenic and photoperiodic responses in Arabidopsis picln mutants are associated with changes in pre-mRNA splicing that partially overlap with those in PROTEIN-ARGININE METHYL TRANSFERASE5 (prmt5) mutants. Mammalian PICLN also acts in concert with the Survival Motor Neuron (SMN) complex component GEMIN2 to modulate the late steps of UsnRNP assembly, and many alternative splicing events regulated by PICLN but not PRMT5, the main protein of the methylosome, are controlled by Arabidopsis GEMIN2. As with GEMIN2 and SM PROTEIN E1/PORCUPINE (SME1/PCP), low temperature, which increases PICLN expression, aggravates morphological and molecular defects of picln mutants. Taken together, these results establish a key role for PICLN in the regulation of pre-mRNA splicing and in mediating plant adaptation to daily and seasonal fluctuations in environmental conditions.

2 citations

Journal ArticleDOI
TL;DR: Three lines of inquiry indicate that inductive interactions play a major role in the acquisition of cell identity during plant development.

2 citations

Journal ArticleDOI
22 Oct 2013-eLife
TL;DR: There are many reasons for submitting your best work to eLife, especially if you are an early career researcher.
Abstract: There are many reasons for submitting your best work to eLife, especially if you are an early career researcher.

2 citations

Journal ArticleDOI
TL;DR: The PlantACT! (Plants for climate ACTion!) initiative of plant scientists lays out a road map of how and in which areas plant scientists can contribute to finding immediate, mid-term and long-term solutions, and what changes are necessary to implement these solutions at the personal, institutional, and funding levels as discussed by the authors .

2 citations

Posted ContentDOI
22 Aug 2022-bioRxiv
TL;DR: It is shown that neither homopolymer errors nor elevated mutation rates at transposable elements are likely to entirely explain reported mutation rate biases, and models derived from the drift-barrier hypothesis demonstrate that mechanisms linking DNA repair to chromatin marks and other epigenomic features can evolve in response to second-order selection on emergent mutation biases.
Abstract: It has recently been proposed that the uneven distribution of epigenomic features might facilitate reduced mutation rate in constrained regions of the Arabidopsis thaliana genome, even though previous work had shown that it would be difficult for reduced mutation rates to evolve on a gene-by-gene basis. A solution to Lynch’s equations for the barrier imposed by genetic drift on the evolution of targeted hypomutation can, however, come from epigenomic features that are enriched in certain portions of the genome, for example, coding regions of essential genes, and which simultaneously affect mutation rate. Such theoretical considerations draw on what is known about DNA repair guided by epigenomic features. A recent publication challenged these conclusions, because several mutation data sets that support a lower mutation rate in constrained regions suffered from variant calling errors. Here we show that neither homopolymer errors nor elevated mutation rates at transposable elements are likely to entirely explain reported mutation rate biases. Observed mutation biases are also supported by a meta-analysis of several independent germline mutation data sets, with complementary experimental data providing a mechanistic basis for reduced mutation rate in genes and specifically in essential genes. Finally, models derived from the drift-barrier hypothesis demonstrate that mechanisms linking DNA repair to chromatin marks and other epigenomic features can evolve in response to second-order selection on emergent mutation biases.

2 citations


Cited by
More filters
Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.

32,946 citations

Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
14 Dec 2000-Nature
TL;DR: This is the first complete genome sequence of a plant and provides the foundations for more comprehensive comparison of conserved processes in all eukaryotes, identifying a wide range of plant-specific gene functions and establishing rapid systematic ways to identify genes for crop improvement.
Abstract: The flowering plant Arabidopsis thaliana is an important model system for identifying genes and determining their functions. Here we report the analysis of the genomic sequence of Arabidopsis. The sequenced regions cover 115.4 megabases of the 125-megabase genome and extend into centromeric regions. The evolution of Arabidopsis involved a whole-genome duplication, followed by subsequent gene loss and extensive local gene duplications, giving rise to a dynamic genome enriched by lateral gene transfer from a cyanobacterial-like ancestor of the plastid. The genome contains 25,498 genes encoding proteins from 11,000 families, similar to the functional diversity of Drosophila and Caenorhabditis elegans--the other sequenced multicellular eukaryotes. Arabidopsis has many families of new proteins but also lacks several common protein families, indicating that the sets of common proteins have undergone differential expansion and contraction in the three multicellular eukaryotes. This is the first complete genome sequence of a plant and provides the foundations for more comprehensive comparison of conserved processes in all eukaryotes, identifying a wide range of plant-specific gene functions and establishing rapid systematic ways to identify genes for crop improvement.

8,742 citations