scispace - formally typeset
Search or ask a question
Author

Detlef Weigel

Bio: Detlef Weigel is an academic researcher from Max Planck Society. The author has contributed to research in topics: Arabidopsis & Arabidopsis thaliana. The author has an hindex of 142, co-authored 516 publications receiving 84670 citations. Previous affiliations of Detlef Weigel include Ludwig Maximilian University of Munich & California Institute of Technology.


Papers
More filters
Posted ContentDOI
21 Feb 2018-bioRxiv
TL;DR: It is shown that adaptation to climate in Arabidopsis thaliana is associated with local strains that substantially deviate from the values predicted by MST, which highlights the evolutionary role of allometric diversification and helps establish the physiological bases of plant adaptation to contrasting environments.
Abstract: Seed plants vary tremendously in size and morphology. However, variation and covariation between plant traits may at least in part be governed by universal biophysical laws and biological constants. Metabolic Scaling Theory (MST) posits that whole-organismal metabolism and growth rate are under stabilizing selection that minimizes the scaling of hydrodynamic resistance and maximizes the scaling of resource uptake. This constrains variation in physiological traits and in the rate of biomass accumulation, so that they can be expressed as mathematical functions of plant size with near constant allometric scaling exponents across species. However, observed variation in scaling exponents questions the evolutionary drivers and the universality of allometric equations. We have measured growth scaling and fitness traits of 451 Arabidopsis thaliana accessions with sequenced genomes. Variation among accessions around the scaling exponent predicted by MST correlated with relative growth rate, seed production and stress resistance. Genomic analyses indicate that growth allometry is affected by many genes associated with local climate and abiotic stress response. The gene with the strongest effect, PUB4, has molecular signatures of balancing selection, suggesting that intraspecific variation in growth scaling is maintained by opposing selection on the trade-off between seed production and abiotic stress resistance. Our findings support a core MST prediction and suggest that variation in allometry contributes to local adaptation to contrasting environments. Our results help reconcile past debates on the origin of allometric scaling in biology, and begin to link adaptive variation in allometric scaling to specific genes.

21 citations

Journal ArticleDOI
15 Apr 2011-Cell
TL;DR: It is revealed that plants also exploit miRNA binding by Argonautes as a sequestering mechanism that prevents miRNAs from fulfilling their normal roles.

20 citations

Journal ArticleDOI
TL;DR: This review discusses the emerging picture of early operating developmental mechanisms, whichpattern floral meristems along the radial and dorsiventral axes, and of later-acting ones, which pattern tissue differentiation within floral organs.

20 citations

Journal ArticleDOI
13 Aug 2014-eLife
TL;DR: eLife has introduced a new type of article–the Research Advance–that allows the authors of an eLife paper to publish results that build on their original research paper.
Abstract: eLife has introduced a new type of article–the Research Advance–that allows the authors of an eLife paper to publish results that build on their original research paper.

20 citations

Posted ContentDOI
30 Oct 2019-bioRxiv
TL;DR: The metagenome data is used, which captures the ratio of bacterial to plant DNA in leaves of wild plants, to scale the 16S rDNA amplicon data such that they reflect absolute bacterial abundance, and it is shown that this cost-effective hybrid strategy overcomes compositionality problems in ampliconData and leads to fundamentally different conclusions about microbiome community assembly.
Abstract: Microorganisms from all domains of life establish associations with plants. Although some harm the plant, others antagonize pathogens or prime the plant immune system, acquire nutrients, tune plant hormone levels, or perform additional services. Most culture-independent plant microbiome research has focused on amplicon sequencing of 16S rDNA and/or the internal transcribed spacer (ITS) of rDNA loci, but the decreasing cost of high-throughput sequencing has made shotgun metagenome sequencing increasingly accessible. Here, we describe shotgun sequencing of 275 wild Arabidopsis thaliana leaf microbiomes from southwest Germany, with additional bacterial 16S rDNA and eukaryotic ITS1 amplicon data from 176 of these samples. The shotgun data were dominated by bacterial sequences, with eukaryotes contributing only a minority of reads. For shotgun and amplicon data, microbial membership showed weak associations with both site of origin and plant genotype, both of which were highly confounded in this dataset. There was large variation among microbiomes, with one extreme comprising samples of low complexity and a high load of microorganisms typical of infected plants, and the other extreme being samples of high complexity and a low microbial load. We use the metagenome data, which captures the ratio of bacterial to plant DNA in leaves of wild plants, to scale the 16S rDNA amplicon data such that they reflect absolute bacterial abundance. We show that this cost-effective hybrid strategy overcomes compositionality problems in amplicon data and leads to fundamentally different conclusions about microbiome community assembly.

20 citations


Cited by
More filters
Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.

32,946 citations

Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
14 Dec 2000-Nature
TL;DR: This is the first complete genome sequence of a plant and provides the foundations for more comprehensive comparison of conserved processes in all eukaryotes, identifying a wide range of plant-specific gene functions and establishing rapid systematic ways to identify genes for crop improvement.
Abstract: The flowering plant Arabidopsis thaliana is an important model system for identifying genes and determining their functions. Here we report the analysis of the genomic sequence of Arabidopsis. The sequenced regions cover 115.4 megabases of the 125-megabase genome and extend into centromeric regions. The evolution of Arabidopsis involved a whole-genome duplication, followed by subsequent gene loss and extensive local gene duplications, giving rise to a dynamic genome enriched by lateral gene transfer from a cyanobacterial-like ancestor of the plastid. The genome contains 25,498 genes encoding proteins from 11,000 families, similar to the functional diversity of Drosophila and Caenorhabditis elegans--the other sequenced multicellular eukaryotes. Arabidopsis has many families of new proteins but also lacks several common protein families, indicating that the sets of common proteins have undergone differential expansion and contraction in the three multicellular eukaryotes. This is the first complete genome sequence of a plant and provides the foundations for more comprehensive comparison of conserved processes in all eukaryotes, identifying a wide range of plant-specific gene functions and establishing rapid systematic ways to identify genes for crop improvement.

8,742 citations