scispace - formally typeset
Search or ask a question
Author

Devin Routh

Bio: Devin Routh is an academic researcher from ETH Zurich. The author has contributed to research in topics: Ecosystem & Climate change. The author has an hindex of 11, co-authored 22 publications receiving 1392 citations. Previous affiliations of Devin Routh include Stellenbosch University & Yale University.

Papers
More filters
Journal ArticleDOI
05 Jul 2019-Science
TL;DR: There is room for an extra 0.9 billion hectares of canopy cover, which could store 205 gigatonnes of carbon in areas that would naturally support woodlands and forests, which highlights global tree restoration as one of the most effective carbon drawdown solutions to date.
Abstract: The restoration of trees remains among the most effective strategies for climate change mitigation. We mapped the global potential tree coverage to show that 4.4 billion hectares of canopy cover could exist under the current climate. Excluding existing trees and agricultural and urban areas, we found that there is room for an extra 0.9 billion hectares of canopy cover, which could store 205 gigatonnes of carbon in areas that would naturally support woodlands and forests. This highlights global tree restoration as our most effective climate change solution to date. However, climate change will alter this potential tree coverage. We estimate that if we cannot deviate from the current trajectory, the global potential canopy cover may shrink by ~223 million hectares by 2050, with the vast majority of losses occurring in the tropics. Our results highlight the opportunity of climate change mitigation through global tree restoration but also the urgent need for action.

1,052 citations

Journal ArticleDOI
24 Jul 2019-Nature
TL;DR: High-resolution spatial maps of the global abundance of soil nematodes and the composition of functional groups show that soil nematode are found in higher abundances in sub-Arctic regions, than in temperate or tropical regions.
Abstract: Soil organisms are a crucial part of the terrestrial biosphere. Despite their importance for ecosystem functioning, few quantitative, spatially explicit models of the active belowground community currently exist. In particular, nematodes are the most abundant animals on Earth, filling all trophic levels in the soil food web. Here we use 6,759 georeferenced samples to generate a mechanistic understanding of the patterns of the global abundance of nematodes in the soil and the composition of their functional groups. The resulting maps show that 4.4 ± 0.64 × 1020 nematodes (with a total biomass of approximately 0.3 gigatonnes) inhabit surface soils across the world, with higher abundances in sub-Arctic regions (38% of total) than in temperate (24%) or tropical (21%) regions. Regional variations in these global trends also provide insights into local patterns of soil fertility and functioning. These high-resolution models provide the first steps towards representing soil ecological processes in global biogeochemical models and will enable the prediction of elemental cycling under current and future climate scenarios.

552 citations

Journal ArticleDOI
15 May 2019-Nature
TL;DR: A spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species, reveals that climate variables are the primary drivers of the distribution of different types of symbiosis.
Abstract: The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools1,2, sequester carbon3,4 and withstand the effects of climate change5,6. Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables—in particular, climatically controlled variation in the rate of decomposition—are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species7, constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers—which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)—are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species.

317 citations

Journal ArticleDOI
Helen Phillips1, Carlos A. Guerra2, Marie Luise Carolina Bartz3, Maria J. I. Briones4, George G. Brown5, Thomas W. Crowther6, Olga Ferlian1, Konstantin B. Gongalsky7, Johan van den Hoogen6, Julia Krebs1, Alberto Orgiazzi, Devin Routh6, Benjamin Schwarz8, Elizabeth M. Bach, Joanne M. Bennett2, Ulrich Brose9, Thibaud Decaëns, Birgitta König-Ries9, Michel Loreau, Jérôme Mathieu, Christian Mulder10, Wim H. van der Putten11, Kelly S. Ramirez, Matthias C. Rillig12, David J. Russell13, Michiel Rutgers, Madhav P. Thakur, Franciska T. de Vries, Diana H. Wall14, David A. Wardle, Miwa Arai15, Fredrick O. Ayuke16, Geoff H. Baker17, Robin Beauséjour, José Camilo Bedano18, Klaus Birkhofer19, Eric Blanchart, Bernd Blossey20, Thomas Bolger21, Robert L. Bradley, Mac A. Callaham22, Yvan Capowiez, Mark E. Caulfield11, Amy Choi23, Felicity Crotty24, Andrea Dávalos20, Andrea Dávalos25, Darío J. Díaz Cosín, Anahí Domínguez18, Andrés Esteban Duhour26, Nick van Eekeren, Christoph Emmerling27, Liliana B. Falco26, Rosa Fernández, Steven J. Fonte14, Carlos Fragoso, André L.C. Franco, Martine Fugère, Abegail T Fusilero28, Shaieste Gholami29, Michael J. Gundale, Mónica Gutiérrez López, Davorka K. Hackenberger30, Luis M. Hernández, Takuo Hishi31, Andrew R. Holdsworth32, Martin Holmstrup33, Kristine N. Hopfensperger34, Esperanza Huerta Lwanga11, Veikko Huhta, Tunsisa T. Hurisso35, Tunsisa T. Hurisso14, Basil V. Iannone, Madalina Iordache36, Monika Joschko, Nobuhiro Kaneko37, Radoslava Kanianska38, Aidan M. Keith39, Courtland Kelly14, Maria Kernecker, Jonatan Klaminder, Armand W. Koné40, Yahya Kooch41, Sanna T. Kukkonen, H. Lalthanzara42, Daniel R. Lammel43, Daniel R. Lammel12, Iurii M. Lebedev7, Yiqing Li44, Juan B. Jesús Lidón, Noa Kekuewa Lincoln45, Scott R. Loss46, Raphaël Marichal, Radim Matula, Jan Hendrik Moos47, Gerardo Moreno48, Alejandro Morón-Ríos, Bart Muys49, Johan Neirynck50, Lindsey Norgrove, Marta Novo, Visa Nuutinen51, Victoria Nuzzo, Mujeeb Rahman P, Johan Pansu17, Shishir Paudel46, Guénola Pérès, Lorenzo Pérez-Camacho52, Raúl Piñeiro, Jean-François Ponge, Muhammad Rashid53, Muhammad Rashid54, Salvador Rebollo52, Javier Rodeiro-Iglesias4, Miguel Á. Rodríguez52, Alexander M. Roth55, Guillaume Xavier Rousseau56, Anna Rożen57, Ehsan Sayad29, Loes van Schaik58, Bryant C. Scharenbroch59, Michael Schirrmann60, Olaf Schmidt21, Boris Schröder61, Julia Seeber62, Maxim Shashkov63, Maxim Shashkov64, Jaswinder Singh65, Sandy M. Smith23, Michael Steinwandter, José Antonio Talavera66, Dolores Trigo, Jiro Tsukamoto67, Anne W. de Valença, Steven J. Vanek14, Iñigo Virto68, Adrian A. Wackett55, Matthew W. Warren, Nathaniel H. Wehr, Joann K. Whalen69, Michael B. Wironen70, Volkmar Wolters71, Irina V. Zenkova, Weixin Zhang72, Erin K. Cameron73, Nico Eisenhauer1 
Leipzig University1, Martin Luther University of Halle-Wittenberg2, Universidade Positivo3, University of Vigo4, Empresa Brasileira de Pesquisa Agropecuária5, ETH Zurich6, Moscow State University7, University of Freiburg8, University of Jena9, University of Catania10, Wageningen University and Research Centre11, Free University of Berlin12, Senckenberg Museum13, Colorado State University14, National Agriculture and Food Research Organization15, University of Nairobi16, Commonwealth Scientific and Industrial Research Organisation17, National Scientific and Technical Research Council18, Brandenburg University of Technology19, Cornell University20, University College Dublin21, United States Forest Service22, University of Toronto23, Aberystwyth University24, State University of New York at Cortland25, National University of Luján26, University of Trier27, University of the Philippines Mindanao28, Razi University29, Josip Juraj Strossmayer University of Osijek30, Kyushu University31, Minnesota Pollution Control Agency32, Aarhus University33, Northern Kentucky University34, Lincoln University (Missouri)35, University of Agricultural Sciences, Dharwad36, Fukushima University37, Matej Bel University38, Lancaster University39, Université d'Abobo-Adjamé40, Tarbiat Modares University41, Pachhunga University College42, University of São Paulo43, University of Hawaii at Hilo44, College of Tropical Agriculture and Human Resources45, Oklahoma State University–Stillwater46, Forest Research Institute47, University of Extremadura48, Katholieke Universiteit Leuven49, Research Institute for Nature and Forest50, Natural Resources Institute Finland51, University of Alcalá52, COMSATS Institute of Information Technology53, King Abdulaziz University54, University of Minnesota55, Federal University of Maranhão56, Jagiellonian University57, Technical University of Berlin58, University of Wisconsin-Madison59, Leibniz Association60, Braunschweig University of Technology61, University of Innsbruck62, Keldysh Institute of Applied Mathematics63, Russian Academy of Sciences64, Khalsa College, Amritsar65, University of La Laguna66, Kōchi University67, Universidad Pública de Navarra68, McGill University69, The Nature Conservancy70, University of Giessen71, Henan University72, University of Saint Mary73
25 Oct 2019-Science
TL;DR: It was found that local species richness and abundance typically peaked at higher latitudes, displaying patterns opposite to those observed in aboveground organisms, which suggest that climate change may have serious implications for earthworm communities and for the functions they provide.
Abstract: Soil organisms, including earthworms, are a key component of terrestrial ecosystems. However, little is known about their diversity, their distribution, and the threats affecting them. We compiled a global dataset of sampled earthworm communities from 6928 sites in 57 countries as a basis for predicting patterns in earthworm diversity, abundance, and biomass. We found that local species richness and abundance typically peaked at higher latitudes, displaying patterns opposite to those observed in aboveground organisms. However, high species dissimilarity across tropical locations may cause diversity across the entirety of the tropics to be higher than elsewhere. Climate variables were found to be more important in shaping earthworm communities than soil properties or habitat cover. These findings suggest that climate change may have serious implications for earthworm communities and for the functions they provide.

223 citations

Journal ArticleDOI
23 Sep 2020-Nature
TL;DR: A global, one-kilometre-resolution map of potential aboveground carbon accumulation rates for the first 30 years of natural forest regrowth is presented, indicating that default rates from the Intergovernmental Panel on Climate Change (IPCC) may be underestimated and maximum climate mitigation potential from natural forest Regrowth is 11 per cent lower than previously reported.
Abstract: To constrain global warming, we must strongly curtail greenhouse gas emissions and capture excess atmospheric carbon dioxide1,2. Regrowing natural forests is a prominent strategy for capturing additional carbon3, but accurate assessments of its potential are limited by uncertainty and variability in carbon accumulation rates2,3. To assess why and where rates differ, here we compile 13,112 georeferenced measurements of carbon accumulation. Climatic factors explain variation in rates better than land-use history, so we combine the field measurements with 66 environmental covariate layers to create a global, one-kilometre-resolution map of potential aboveground carbon accumulation rates for the first 30 years of natural forest regrowth. This map shows over 100-fold variation in rates across the globe, and indicates that default rates from the Intergovernmental Panel on Climate Change (IPCC)4,5 may underestimate aboveground carbon accumulation rates by 32 per cent on average and do not capture eight-fold variation within ecozones. Conversely, we conclude that maximum climate mitigation potential from natural forest regrowth is 11 per cent lower than previously reported3 owing to the use of overly high rates for the location of potential new forest. Although our data compilation includes more studies and sites than previous efforts, our results depend on data availability, which is concentrated in ten countries, and data quality, which varies across studies. However, the plots cover most of the environmental conditions across the areas for which we predicted carbon accumulation rates (except for northern Africa and northeast Asia). We therefore provide a robust and globally consistent tool for assessing natural forest regrowth as a climate mitigation strategy. A one-kilometre-resolution map of aboveground carbon accumulation rates of forest regrowth shows 100-fold variation across the globe, with rates 32% higher on average than IPCC estimates.

219 citations


Cited by
More filters
Book ChapterDOI
01 Jan 2008
TL;DR: The Future of Drylands (FOD) conference as mentioned in this paper is an international scientific conference dedicated to science, education, culture and communication in arid and semi-arid zones.
Abstract: On behalf of Mr. Koichiro Matsuura, Director-General of UNESCO, it is my great pleasure to welcome you all to this international scientific conference. Drylands are often considered fragile ecosystems, yet they have a remarkable resilience to stress. They are home to unique and well-adapted plant and animal species that we need to conserve. Some of the world’s greatest cultures and belief systems have originated in drylands. On the other hand, desertification and land degradation in drylands often result in poverty and cause environmental refugees to abandon their homes. These problems can only be addressed in a holistic manner, based on sound scientific research and findings. Solutions to the problems of dryland degradation need to be communicated as widely as possible through education at all levels. These are many reasons why UNESCO – within its mandate of science, education, culture and communication – took the intiative to organize this conference. And we are glad that so many partners have responded to our call. UNESCO considers this conference as its main contribution to the observance of the International Year of Deserts and Desertification in 2006. We have deliberately chosen the title ‘The Future of Drylands’ as we feel it is time to redefine our priorities for science, education and governance in the drylands based on 50 years of scientific research in arid and semi-arid zones. In fact UNESCO has one of the longest traditions, within the UN system, of addressing dryland problems from an interdisciplinary, scientific point of view. In 1955, the ‘International Arid Land Meetings’ were held in Socorro, New Mexico (USA). They were organized by the American Association for the Advancement of Science (AAAS), sponsored by UNESCO and supported by the Rockefeller Foundation. One important output of the International Arid Land Meetings was a book entitled The Future of Drylands, edited by Gilbert F. White and published in

1,199 citations

Journal ArticleDOI
13 Dec 2019-Science
TL;DR: The first integrated global-scale intergovernmental assessment of the status, trends, and future of the links between people and nature provides an unprecedented picture of the extent of the authors' mutual dependence, the breadth and depth of the ongoing and impending crisis, and the interconnectedness among sectors and regions.
Abstract: The human impact on life on Earth has increased sharply since the 1970s, driven by the demands of a growing population with rising average per capita income. Nature is currently supplying more materials than ever before, but this has come at the high cost of unprecedented global declines in the extent and integrity of ecosystems, distinctness of local ecological communities, abundance and number of wild species, and the number of local domesticated varieties. Such changes reduce vital benefits that people receive from nature and threaten the quality of life of future generations. Both the benefits of an expanding economy and the costs of reducing nature's benefits are unequally distributed. The fabric of life on which we all depend-nature and its contributions to people-is unravelling rapidly. Despite the severity of the threats and lack of enough progress in tackling them to date, opportunities exist to change future trajectories through transformative action. Such action must begin immediately, however, and address the root economic, social, and technological causes of nature's deterioration.

913 citations

01 Jan 2011
TL;DR: The GMTED2010 layer extents (minimum and maximum latitude and longitude) are a result of the coordinate system inherited from the 1-arcsecond SRTM.
Abstract: For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. 10. Diagram showing the GMTED2010 layer extents (minimum and maximum latitude and longitude) are a result of the coordinate system inherited from the 1-arc-second SRTM

802 citations

Journal ArticleDOI
01 Jan 2020
TL;DR: In this article, the authors examined the detection of the greening signal, its causes and its consequences, and showed that greening is pronounced over intensively farmed or afforested areas, such as in China and India, reflecting human activities.
Abstract: Vegetation greenness has been increasing globally since at least 1981, when satellite technology enabled large-scale vegetation monitoring. The greening phenomenon, together with warming, sea-level rise and sea-ice decline, represents highly credible evidence of anthropogenic climate change. In this Review, we examine the detection of the greening signal, its causes and its consequences. Greening is pronounced over intensively farmed or afforested areas, such as in China and India, reflecting human activities. However, strong greening also occurs in biomes with low human footprint, such as the Arctic, where global change drivers play a dominant role. Vegetation models suggest that CO2 fertilization is the main driver of greening on the global scale, with other factors being notable at the regional scale. Modelling indicates that greening could mitigate global warming by increasing the carbon sink on land and altering biogeophysical processes, mainly evaporative cooling. Coupling high temporal and fine spatial resolution remote-sensing observations with ground measurements, increasing sampling in the tropics and Arctic, and modelling Earth systems in more detail will further our insights into the greening of Earth. Vegetation on Earth is increasing, potentially leading to a larger terrestrial carbon sink. In this Review, we discuss the occurrence of this global greening phenomenon, its drivers and how it might impact carbon cycling and land-atmosphere heat and water fluxes.

722 citations

Journal ArticleDOI
TL;DR: The United States participated at the World Food Summit: Five Years Later meeting held at FAO headquarters June 10-13, 2002, to discuss progress towards attaining the 1996 World Food summit target of reducing the world’s number of hungry and malnourished by half by 2015 as discussed by the authors.
Abstract: Food and Agriculture Organization (FAO) The Food and Agriculture Organization (FAO), established in 1945, is a UN specialized agency that provides global data and expertise on agri­ culture and nutrition, fisheries, forestry, and other food and agriculture– related issues. FAO is the UN system’s largest autonomous agency, with headquarters in Rome, 78 country offices and 15 regional, sub–regional, and liaison offices, including one located in Washington, D.C. FAO’s highest policy–making body, the biennial General Conference, comprises all 183 FAO member countries plus the European Commission. The General Conference determines FAO policy and approves FAO’s reg­ ular program of work and budget. The 31st Conference, meeting in November 1999, re–elected Director–General Jacques Diouf (Senegal) to a second six–year term through December 2005. Each biennial Confer­ ence elects a 49–member Council that meets semi–annually to make rec­ ommendations to the General Conference on budget and policy issues. The North America region, which comprises the United States and Can­ ada, is allocated two seats on the Council and one seat each on FAO’s Program, Finance, and Constitutional and Legal Matters (CCLM) Com­ mittees. The United States holds the North American seats on the Finance and Joint Staff Pension Committees through December 2003. Canada holds the North American seat on the CCLM and Program Committees through December 2003. The United States participated at the World Food Summit: Five Years Later meeting held at FAO headquarters June 10–13, 2002, to discuss progress towards attaining the 1996 World Food Summit target of reduc­ ing the world’s number of hungry and malnourished by half by 2015. The United States presented new initiatives to improve agriculture productivity as a significant contribution toward meeting that goal. U.S. Secretary of Agriculture Ann Veneman, leading the U.S. delegation, joined other min­ isters and heads of state and government in adopting a Declaration, “The International Alliance Against Hunger,” which reiterated the goals of the 1996 World Food Summit and stated, inter alia, “we are committed to

683 citations