scispace - formally typeset
Search or ask a question
Author

Devin V. McAllister

Other affiliations: Micron Technology
Bio: Devin V. McAllister is an academic researcher from Georgia Institute of Technology. The author has contributed to research in topics: Transdermal & Vaccination. The author has an hindex of 9, co-authored 13 publications receiving 2698 citations. Previous affiliations of Devin V. McAllister include Micron Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: These microneedle arrays could be easily inserted into skin without breaking and were shown to increase permeability of human skin in vitro to a model drug, calcein, by up to 4 orders of magnitude.

1,181 citations

Journal ArticleDOI
TL;DR: Microfabrication techniques for silicon, metal, and biodegradable polymer microneedle arrays having solid and hollow bores with tapered and beveled tips and feature sizes from 1 to 1,000 μm allowed flow of microliter quantities into skin in vivo, including microinjection of insulin to reduce blood glucose levels in diabetic rats.
Abstract: Arrays of micrometer-scale needles could be used to deliver drugs, proteins, and particles across skin in a minimally invasive manner. We therefore developed microfabrication techniques for silicon, metal, and biodegradable polymer microneedle arrays having solid and hollow bores with tapered and beveled tips and feature sizes from 1 to 1,000 μm. When solid microneedles were used, skin permeability was increased in vitro by orders of magnitude for macromolecules and particles up to 50 nm in radius. Intracellular delivery of molecules into viable cells was also achieved with high efficiency. Hollow microneedles permitted flow of microliter quantities into skin in vivo, including microinjection of insulin to reduce blood glucose levels in diabetic rats.

795 citations

Journal ArticleDOI
TL;DR: Microneedles have been developed to reduce needle insertion pain and tissue trauma and to provide controlled delivery across the skin, and these needles have been shown to be robust enough to penetrate skin and dramatically increase skin permeability to macromolecules.
Abstract: ▪ Abstract By incorporating techniques adapted from the microelectronics industry, the field of microfabrication has allowed the creation of microneedles, which have the potential to improve existing biological-laboratory and medical devices and to enable novel devices for gene and drug delivery. Dense arrays of microneedles have been used to deliver DNA into cells. Many cells are treated at once, which is much more efficient than current microinjection techniques. Microneedles have also been used to deliver drugs into local regions of tissue. Microfabricated neural probes have delivered drugs into neural tissue while simultaneously stimulating and recording neuronal activity, and microneedles have been inserted into arterial vessel walls to deliver antirestenosis drugs. Finally, microhypodermic needles and microneedles for transdermal drug delivery have been developed to reduce needle insertion pain and tissue trauma and to provide controlled delivery across the skin. These needles have been shown to be ...

358 citations

Journal ArticleDOI
TL;DR: Safety, immunogenicity, and acceptability of the first-in-man study on single, dissolvable microneedle patch vaccination against influenza are described and secondary safety outcomes are new-onset chronic illnesses within 180 days and unsolicited adverse events within 28 days, all analysed by intention to treat.

279 citations

Proceedings ArticleDOI
25 Jan 1998
TL;DR: These microneedles were fabricated using the Black Silicon Method, which is a reactive ion etching process in which an SF/sub 6//O/sub 2/ plasma etches silicon anisotropically and demonstrated excellent mechanical properties and skin permeability to calcein, a model drug, by up to four orders of magnitude.
Abstract: Although modern biotechnology has produced extremely sophisticated and potent drugs, many of these compounds cannot be effectively delivered using current drug delivery techniques (e.g., pills and injections). Administration across skin by transdermal drug delivery is an attractive alternative, but it is limited by the remarkably poor permeability of the skin. Because the primary barrier to transport is located in the upper 10-15 /spl mu/m of skin, and because nerves are only found in deeper tissue, we made arrays of microneedles long enough to cross the permeability barrier but not so long that they stimulate nerves, thereby causing no pain. These microneedles were fabricated using the Black Silicon Method, which is a reactive ion etching process in which an SF/sub 6//O/sub 2/ plasma etches silicon anisotropically. When inserted into skin in vitro, these microneedles demonstrated excellent mechanical properties and enhanced skin permeability to calcein, a model drug, by up to four orders of magnitude. Limited tests on humans demonstrated that microneedles were painless.

161 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Micro- and nanotechnologies are enabling the design of novel methods such as radio-frequency addressing of individual molecules or the suppression of immune response to a release device, but current challenges include the need to balance the small scale of the devices with the quantities of drugs that are clinically necessary.
Abstract: Recent developments in the application of micro- and nanosystems for drug administration include a diverse range of new materials and methods. New approaches include the on-demand activation of molecular interactions, novel diffusion-controlled delivery devices, nanostructured 'smart' surfaces and materials, and prospects for coupling drug delivery to sensors and implants. Micro- and nanotechnologies are enabling the design of novel methods such as radio-frequency addressing of individual molecules or the suppression of immune response to a release device. Current challenges include the need to balance the small scale of the devices with the quantities of drugs that are clinically necessary, the requirement for more stable sensor platforms, and the development of methods to evaluate these new materials and devices for safety and efficacy.

1,307 citations

Journal ArticleDOI
TL;DR: Microneedles represent a promising technology to deliver therapeutic compounds into the skin for a range of possible applications and the ratio of microneedle fracture force to skin insertion force was found to be optimal for needles with small tip radius and large wall thickness.

1,298 citations

Journal ArticleDOI
TL;DR: The already significant impact this field has made on the administration of various pharmaceuticals is discussed; limitations of the current technology are explored; methods under exploration for overcoming these limitations and the challenges ahead are discussed.
Abstract: The past twenty five years have seen an explosion in the creation and discovery of new medicinal agents. Related innovations in drug delivery systems have not only enabled the successful implementation of many of these novel pharmaceuticals, but have also permitted the development of new medical treatments with existing drugs. The creation of transdermal delivery systems has been one of the most important of these innovations, offering a number of advantages over the oral route. In this article, we discuss the already significant impact this field has made on the administration of various pharmaceuticals; explore limitations of the current technology; and discuss methods under exploration for overcoming these limitations and the challenges ahead.

1,275 citations

Journal ArticleDOI
TL;DR: Building off a strong technology base and multiple demonstrations of successful drug delivery, microneedles are poised to advance further into clinical practice to enable better pharmaceutical therapies, vaccination and other applications.

1,271 citations

Journal ArticleDOI
TL;DR: These microneedle arrays could be easily inserted into skin without breaking and were shown to increase permeability of human skin in vitro to a model drug, calcein, by up to 4 orders of magnitude.

1,181 citations