scispace - formally typeset
Search or ask a question
Author

Devraj Singh

Bio: Devraj Singh is an academic researcher from Guru Gobind Singh Indraprastha University. The author has contributed to research in topics: Ultrasonic sensor & Debye model. The author has an hindex of 14, co-authored 63 publications receiving 573 citations. Previous affiliations of Devraj Singh include Amity University & Allahabad University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the second order elastic constants of hexagonal structured (wurtzite) third group nitrides (GaN, AlN and InN) were calculated using the Lennard-Jones potential for the determination of ultrasonic attenuation.

59 citations

Journal ArticleDOI
26 Apr 2012-Pramana
TL;DR: In this article, the synthesis and characterization of nanosized zinc oxide and its nanofluid in a polyvinyl alcohol (PVA) matrix have been done in the present investigation.
Abstract: The synthesis and characterization of nanosized zinc oxide and its nanofluid in a polyvinyl alcohol (PVA) matrix have been done in the present investigation. Crystalline zinc oxide nanoparticles are synthesized using single-step chemical method while the nanofluids are prepared by the dispersion of nanoparticles in PVA solution using an ultrasonicator. The prepared nanoparticles are characterized using X-ray diffraction, SEM–EDX and UV–visible spectrum. The particle size distribution measurement is carried out by acoustic particle sizer. The ultrasonic velocities are measured in the synthesized nanofluid under different physical conditions using an ultrasonic interferometer. It is found that the degree of crystallinity of nanoparticles depends on the evaporation rate during its synthesis and ultrasonic velocity has non-linear relation with temperature for the present nanofluid.

32 citations

Journal ArticleDOI
TL;DR: In this article, the synthesis and characterisation of ZnO nanoparticles and suspension of ZNO-ethylene glycol (EG) nanofluid is discussed.
Abstract: This study deals with the synthesis and characterisation of ZnO nanoparticles and suspension of ZnO-ethylene glycol (EG) nanofluid. Crystalline ZnO nanoparticles are synthesised using the chemical method. The nanofluids were synthesised by the dispersion of ZnO nanoparticles in EG solution using an ultrasonicator. The prepared ZnO nanoparticles are characterised by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and UV-Vis absorption spectrum. The particle size distribution and ultrasonic parameters of the synthesised nanofluid are measured with the help of acoustic particle sizer (APS-100) and ultrasonic interferometer. The observed features of ZnO nanoparticles and ZnO-EG nanofluids are discussed in correlation with known properties of other nanofluids.

28 citations

Journal ArticleDOI
TL;DR: In this article, the ultrasonic attenuation and acoustic coupling constants due to phonon-phonon interaction and thermoelastic relaxation mechanisms have been studied for longitudinal and shear waves in B 1 structured neptunium monochalcogenides NpX (X: S, Se, Te) along 〈1-0-0〉 direction in the temperature range 100-300 K.

27 citations

Journal ArticleDOI
TL;DR: In this paper, ultrasonic properties like ultrasonic attenuation, sound velocities, acoustic coupling constants and thermal relaxation time have been studied in hexagonal structured metals Gadolinium, Terbium, Dysprosium (Dy), Holmium (Ho), Erbium (Er), and Thulium (Tm) along unique axis at room temperature
Abstract: In this paper, ultrasonic properties like ultrasonic attenuation, sound velocities, acoustic coupling constants and thermal relaxation time have been studied in hexagonal structured metals Gadolinium (Gd), Terbium (Tb), Dysprosium (Dy), Holmium (Ho), Erbium (Er) and Thulium (Tm) along unique axis at room temperature For the evaluations of ultrasonic properties, secondand thirdorder elastic constants have been computed also The peculiar behavior of these metals is found at 55° due their least thermal relaxation time and highest Debye average velocity Dy is more ductile, stable, perfect metal in comparison to other chosen metals due to its lowest value of attenuation So we predict that Dy is most suitable lanthanide metals for material science and engineering

27 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review extensively discusses the multifunctional bio-applications of AgNPs; for example, as antibacterial, antifungal, antiviral,Anti-inflammatory, anti-angiogenic, and anti-cancer agents, and the mechanism of the anti- cancer activity of Ag NPs.
Abstract: Recent advances in nanoscience and nanotechnology radically changed the way we diagnose, treat, and prevent various diseases in all aspects of human life. Silver nanoparticles (AgNPs) are one of the most vital and fascinating nanomaterials among several metallic nanoparticles that are involved in biomedical applications. AgNPs play an important role in nanoscience and nanotechnology, particularly in nanomedicine. Although several noble metals have been used for various purposes, AgNPs have been focused on potential applications in cancer diagnosis and therapy. In this review, we discuss the synthesis of AgNPs using physical, chemical, and biological methods. We also discuss the properties of AgNPs and methods for their characterization. More importantly, we extensively discuss the multifunctional bio-applications of AgNPs; for example, as antibacterial, antifungal, antiviral, anti-inflammatory, anti-angiogenic, and anti-cancer agents, and the mechanism of the anti-cancer activity of AgNPs. In addition, we discuss therapeutic approaches and challenges for cancer therapy using AgNPs. Finally, we conclude by discussing the future perspective of AgNPs.

1,720 citations

Journal ArticleDOI
TL;DR: In this article, a magnetophoretically formed high aspect ratio nano-nodes are used for hot-spot cooling in microfluidic environments, which can be dynamically chained and docked onto the hot spots to establish tuneable high-aspect ratio nanofins for the heat exchange between these hot spots and the liquid coolant.
Abstract: The limitation of hot spot cooling in microchips represents an important hurdle for the electronics industry to overcome with coolers yet to exceed the efficiencies required. Nanotechnology-enabled heat sinks that can be magnetophoretically formed onto the hot spots within a microfluidic environment are presented. CrO2 nanoparticles, which are dynamically chained and docked onto the hot spots, establish tuneable high-aspect-ratio nanofins for the heat exchange between these hot spots and the liquid coolant. These nanofins can also be grown and released on demand, absorbing and releasing the heat from the hot spots into the microfluidic system. It is shown that both high aspect ratio and flexibility of the fins have a dramatic effect on increasing the heat sinking efficiency. The system has the potential to offer a practical cooling solution for future electronics.

855 citations

Journal ArticleDOI
TL;DR: Nanofluids have seen enormous growth in popularity since they were proposed by Choi in 1995 as mentioned in this paper, and there were nearly 700 research articles where the term nanofluid was used in the title, showing rapid growth from 2006 (175) and 2001 (10).
Abstract: Nanofluids—a simple product of the emerging world of nanotechnology—are suspensions of nanoparticles (nominally 1–100 nm in size) in conventional base fluids such as water, oils, or glycols. Nanofluids have seen enormous growth in popularity since they were proposed by Choi in 1995. In the year 2011 alone, there were nearly 700 research articles where the term nanofluid was used in the title, showing rapid growth from 2006 (175) and 2001 (10). The first decade of nanofluid research was primarily focused on measuring and modeling fundamental thermophysical properties of nanofluids (thermal conductivity, density, viscosity, heat transfer coefficient). Recent research, however, explores the performance of nanofluids in a wide variety of other applications. Analyzing the available body of research to date, this article presents recent trends and future possibilities for nanofluids research and suggests which applications will see the most significant improvement from employing nanofluids.

679 citations

Journal ArticleDOI
TL;DR: It was noticed that the smallest-sized spherical AgNPs demonstrated a better antibacterial activity against both bacterial strains as compared to the triangular and larger spherical shaped AgnPs.
Abstract: Silver nanoparticles (AgNPs) of different shapes and sizes were prepared by solution-based chemical reduction routes. Silver nitrate was used as a precursor, tri-sodium citrate (TSC) and sodium borohydride as reducing agents, while polyvinylpyrrolidone (PVP) was used as a stabilizing agent. The morphology, size, and structural properties of obtained nanoparticles were characterized by scanning electron microscopy (SEM), UV-visible spectroscopy (UV-VIS), and X-ray diffraction (XRD) techniques. Spherical AgNPs, as depicted by SEM, were found to have diameters in the range of 15 to 90 nm while lengths of the edges of the triangular particles were about 150 nm. The characteristic surface plasmon resonance (SPR) peaks of different spherical silver colloids occurring in the wavelength range of 397 to 504 nm, whereas triangular particles showed two peaks, first at 392 nm and second at 789 nm as measured by UV-VIS. The XRD spectra of the prepared samples indicated the face-centered cubic crystalline structure of metallic AgNPs. The in vitro antibacterial properties of all synthesized AgNPs against two types of Gram-negative bacteria, Pseudomonas aeruginosa and Escherichia coli were examined by Kirby–Bauer disk diffusion susceptibility method. It was noticed that the smallest-sized spherical AgNPs demonstrated a better antibacterial activity against both bacterial strains as compared to the triangular and larger spherical shaped AgNPs.

486 citations