scispace - formally typeset
Search or ask a question
Author

DeWitt S. Goodman

Bio: DeWitt S. Goodman is an academic researcher from Columbia University. The author has contributed to research in topics: Retinol & Retinol binding protein. The author has an hindex of 70, co-authored 180 publications receiving 15820 citations. Previous affiliations of DeWitt S. Goodman include Albert Einstein College of Medicine & Hoffmann-La Roche.


Papers
More filters
Journal ArticleDOI
TL;DR: In plasma, RBP apparently circulates as a complex, together with another, larger protein with prealbumin mobility on electrophoresis, which appears to involve both a lipid-protein (retinol-RBP) interaction and a protein- protein (RBP-prealbumin) interaction.
Abstract: Vitamin A circulates in human plasma as retinol bound to a specific transport protein. This protein differs from the known low and high density plasma lipoproteins and has a hydrated density greater than 1.21. In order to study this protein, volunteers were injected intravenously with retinol-15-14C. Plasma was collected 1-3 days later, and the purification of retinol-binding protein (RBP) was monitored by assaying for 14C and also by following the fluorescence of the protein-bound retinol. Purification of RBP was effected by the sequence: Cohn fractionation, chromatography on columns of Sephadex G-200 and diethylaminoethyl (DEAE)-Sephadex, preparative polyacrylamide gel electrophoresis, and finally chromatography on Sephadex G-100. These procedures resulted in a preparation of RBP which was at least 98% pure and which had been purified more than 1500-fold. Purified RBP has α1 mobility on electrophoresis and has a molecular weight of approximately 21,000-22,000. There appears to be one binding site for retinol per molecule of RBP. Solutions of RBP are fluorescent (characteristic of retinol) and have ultraviolet absorption spectra with peaks at 330 mμ (resulting from the bound retinol) and at 280 mμ. There are no fatty acid or fatty acyl chains present in purified RBP. The usual concentration of RBP in plasma is of the order of 3-4 mg/100 ml. In plasma, RBP apparently circulates as a complex, together with another, larger protein with prealbumin mobility on electrophoresis. The RBP-prealbumin complex remains intact during Cohn fractionation and during chromatography on Sephadex and on DEAE-Sephadex columns. The complex dissociates during gel electrophoresis, permitting the isolation and subsequent purification of each of the components. The complex is again formed by mixing together solutions of the separated RBP and of prealbumin. Retinol transport in plasma thus appears to involve both a lipid-protein (retinol-RBP) interaction and a protein-protein (RBP-prealbumin) interaction.

841 citations

Journal ArticleDOI
TL;DR: NIGHT blindness was recognized as a disease entity in ancient Egypt and literature dating from ancient times to the early 20th century contains comments that appear to indicate recognition of the existence of a dietary substance necessary for night vision.
Abstract: NIGHT blindness was recognized as a disease entity in ancient Egypt. Moreover, literature dating from ancient times to the early 20th century contains comments that appear to indicate recognition of the existence of a dietary substance necessary for night vision. In 1913 McCollum and Davis1 reported that an essential lipid-soluble substance in certain foods promoted growth in rats. They later called this substance "Fat Soluble A," to distinguish it from essential water-soluble nutrients ("Water Soluble B"). Further studies by a number of investigators showed that "Fat Soluble A" (later named vitamin A) not only maintained growth but was capable of . . .

532 citations

Journal ArticleDOI
TL;DR: It is suggested that the variant TTR represents the specific biochemical cause of the disease, and that this abnormal form of TTR selectively deposits in tissues as the amyloid characteristic of the Alzheimer's disease.
Abstract: Amyloid fibril protein in patients with familial amyloidotic polyneuropathy is known to be chemically related to transthyretin (TTR), the plasma protein that is usually referred to as prealbumin. A genetically abnormal TTR may be involved in this disease. Studies were conducted on amyloid fibril protein (AFp) isolated from tissues of two Portuguese patients who died with familial amyloidosis, and on TTR isolated from sera of patients with this disease. AFp, purified by affinity chromatography on retinol-binding protein linked to Sepharose, resembled plasma TTR in forming a stable tetrameric structure, and in its binding affinities for both thyroxine and retinol-binding protein. The structural studies included: (a) comparative peptide mappings by reverse-phase high performance liquid chromatography (HPLC) after trypsin digestion; (b) cyanogen bromide cleavage studies; and (c) amino acid microsequence analysis of selected tryptic and CNBr peptides. On the basis of the known amino acid sequence of TTR, comparative tryptic peptide maps showed the presence of a single aberrant tryptic peptide (peptide 4, residues 22-34) in AFp as compared with TTR. This aberrant peptide contained a methionine residue, not present in normal tryptic peptide 4. CNBr cleavage of AFp produced two extra peptide fragments, which were demonstrated, respectively, by HPLC analysis and by sodium dodecyl sulfate-gel electrophoresis. Sequence analyses indicated the presence of a methionine-for-valine substitution at position 30 in AFp as compared with TTR. Thus, the purified amyloid fibril protein comprised a TTR variant with a methionine-forvaline substitution at position 30. A single nucleotide change in a possible codon for valine 30 could explain the substitution. The variant TTR was also present in the TTR isolated from the pooled sera of amyloidoses patients, together with larger (four- to six-fold) amounts of the normal TTR. Thus, in these patients, the variant TTR was circulating in plasma, along with larger amounts of normal TTR. We suggest that the variant TTR represents the specific biochemical cause of the disease, and that this abnormal form of TTR selectively deposits in tissues as the amyloid characteristic of the disease.

436 citations

Journal ArticleDOI
TL;DR: The kidneys appear to play an important role in the normal metabolism of RBP, and in renal disease the levels of both RBP and vitamin A were greatly elevated, while the PA levels remained normal.
Abstract: The effects of diseases of the liver, the thyroid, and the kidneys on the retinol-binding protein (RBP)-prealbumin (PA) system responsible for the transport of vitamin A in plasma were examined, using a radial gel diffusion immunoassay for PA and the previously described radioimmunoassay for RBP. Measurements were made on plasma samples from 118 normal subjects, 31 patients with cirrhosis, 5 with chronic active hepatitis, 27 with acute viral hepatitis, 14 patients with hyperthyroidism, 7 with hypothyroidism, and 26 patients with chronic renal disease of varying etiologies. In the patients with liver disease, the levels of vitamin A, RBP, and PA were all markedly decreased and were highly significantly correlated over a wide range of concentrations. Serial samples were available in 19 patients with acute hepatitis; as the disease improved the plasma concentrations of vitamin A, RBP, and PA all increased. In patients with acute hepatitis RBP concentrations correlated negatively with the levels of plasma bilirubin, glutamic-oxaloacetic transaminase, and alkaline phosphatase. In the hyperthyroid patients both RBP and PA concentrations were significantly lower than normal; in hypothyroidism, neither protein showed levels significantly different from normal. In both hyper- and hypothyroidism and in liver disease, the molar ratios of RBP:PA and of RBP:vitamin A were not significantly different from normal.Patients with chronic renal disease had marked abnormalities in the plasma concentrations of RBP and vitamin A and in the molar ratios examined. In renal disease the levels of both RBP and vitamin A were greatly elevated, while the PA levels remained normal. The molar ratios of RBP:PA and of RBP:vitamin A were both markedly elevated. In many patients RBP was present in molar excess as compared with PA. The presence of a relatively large proportion of free RBP, not complexed to PA, in some patients with chronic renal disease was confirmed by gel filtration. The free RBP, present in molar excess, was capable of forming a complex with additional purified PA added to the plasma. The kidneys appear to play an important role in the normal metabolism of RBP.

422 citations

Journal ArticleDOI
TL;DR: These findings reflect the facts that RBP is produced in the liver and mainly catabolized in the kidneys, and delivery of retinol to extra-hepatic tissues appears to involve specific cell surface receptors for RBP.
Abstract: Vitamin A is mobilized from liver stores and transported in plasma in the form of the lipid alcohol retinol, bound to a specific transport protein, retinol-binding protein (RBP). A great deal is known about the chemical structure, metabolism, and biological roles of RBP. RBP is a single polypeptide chain with molecular weight close to 20,000. RBP interacts strongly with plasma prealbumin, and normally circulates in plasma as a 1:1 molar RBP-prealbumin complex. Both the primary and the tertiary structure of prealbumin are known, and the primary structure of RBP has recently been reported. Much information is available about the protein-protein and protein-ligand interactions that are involved in this transport system. Many clinical studies have examined the effects of a variety of diseases on the plasma levels of RBP and prealbumin in humans. Plasma RBP levels are low in patients with liver disease and are high in patients with chronic renal disease. These findings reflect the facts that RBP is produced in the liver and mainly catabolized in the kidneys. Delivery of retinol to extra-hepatic tissues appears to involve specific cell surface receptors for RBP. Vitamin A mobilization from the liver, and delivery to peripheral tissues, is highly regulated by factors that control the rates of RBP production and secretion. Retinol deficiency specifically blocks the secretion of RBP, so that plasma RBP levels fall and liver RBP levels rise. Injection of retinol into vitamin A-deficient rats stimulates the rapid secretion of RBP from the liver into the plasma. The cellular and molecular mechanisms that mediate these phenomena are under investigation. Elucidation of these mechanisms should help define the basic mechanisms that control the mobilization, transport, and delivery of vitamin A.

417 citations


Cited by
More filters
Journal ArticleDOI
01 Feb 1990-Nature
TL;DR: The mevalonate pathway produces isoprenoids that are vital for diverse cellular functions, ranging from cholesterol synthesis to growth control, and could be useful in treating certain forms of cancer as well as heart disease.
Abstract: The mevalonate pathway produces isoprenoids that are vital for diverse cellular functions, ranging from cholesterol synthesis to growth control. Several mechanisms for feedback regulation of low-density-lipoprotein receptors and of two enzymes involved in mevalonate biosynthesis ensure the production of sufficient mevalonate for several end-products. Manipulation of this regulatory system could be useful in treating certain forms of cancer as well as heart disease.

5,125 citations

Journal ArticleDOI
TL;DR: Infection with H. pylori is associated with an increased risk of gastric adenocarcinoma and may be a cofactor in the pathogenesis of this malignant condition.
Abstract: Background. Infection with Helicobacter pylori has been linked with chronic atrophic gastritis, an inflammatory precursor of gastric adenocarcinoma. In a nested case–control study, we explored whether H. pylori infection increases the risk of gastric carcinoma. Methods. From a cohort of 128,992 persons followed since the mid-1960s at a health maintenance organization, 186 patients with gastric carcinoma were selected as case patients and were matched according to age, sex, and race with 186 control subjects without gastric carcinoma. Stored serum samples collected during the 1960s were tested for IgG antibodies to H. pylori by enzyme-linked immunosorbent assay. Data on cigarette use, blood group, ulcer disease, and gastric surgery were obtained from questionnaires administered at enrollment. Tissue sections and pathology reports were reviewed to confirm the histologic results. Results. The mean time between serum collection and the diagnosis of gastric carcinoma was 14.2 years. Of the 109 patient...

3,882 citations

Journal ArticleDOI
TL;DR: Methods for assessment of several phenotypes of human obesity, with special reference to abdominal fat content, have been evaluated and the endocrine regulation of abdominal visceral fat in comparison with the adipose tissue localized in other areas is presented.
Abstract: Methods for assessment, e.g., anthropometric indicators and imaging techniques, of several phenotypes of human obesity, with special reference to abdominal fat content, have been evaluated. The correlation of fat distribution with age, gender, total body fat, energy balance, adipose tissue lipoprotein lipase and lipolytic activity, adipose tissue receptors, and genetic characteristics are discussed. Several secreted or expressed factors in the adipocyte are evaluated in the context of fat tissue localization. The body fat distribution and the metabolic profile in nonobese and obese individuals is discussed relative to lipolysis, antilypolysis and lipogenesis, insulin sensitivity, and glucose, lipid, and protein metabolism. Finally, the endocrine regulation of abdominal visceral fat in comparison with the adipose tissue localized in other areas is presented.

2,822 citations

Journal ArticleDOI
TL;DR: The body cholesterol pool increases with decreasing plasma-high-density-lipoprotein (H.D.L.) but is unrelated to the plasma concentrations of total cholesterol and other lipoproteins, and it is proposed that a reduction of plasma-H.H.L.D., is reduced in several conditions associated with an increased risk of future ischaemic heart-disease, by impairing the clearance of cholesterol from the arterial wall.

2,626 citations

Journal ArticleDOI
TL;DR: The hepatic stellate cell has surprised and engaged physiologists, pathologists, and hepatologists for over 130 years, yet clear evidence of its role in hepatic injury and fibrosis only emerged following the refinement of methods for its isolation and characterization.
Abstract: The hepatic stellate cell has surprised and engaged physiologists, pathologists, and hepatologists for over 130 years, yet clear evidence of its role in hepatic injury and fibrosis only emerged following the refinement of methods for its isolation and characterization. The paradigm in liver injury of activation of quiescent vitamin A-rich stellate cells into proliferative, contractile, and fibrogenic myofibroblasts has launched an era of astonishing progress in understanding the mechanistic basis of hepatic fibrosis progression and regression. But this simple paradigm has now yielded to a remarkably broad appreciation of the cell's functions not only in liver injury, but also in hepatic development, regeneration, xenobiotic responses, intermediary metabolism, and immunoregulation. Among the most exciting prospects is that stellate cells are essential for hepatic progenitor cell amplification and differentiation. Equally intriguing is the remarkable plasticity of stellate cells, not only in their variable intermediate filament phenotype, but also in their functions. Stellate cells can be viewed as the nexus in a complex sinusoidal milieu that requires tightly regulated autocrine and paracrine cross-talk, rapid responses to evolving extracellular matrix content, and exquisite responsiveness to the metabolic needs imposed by liver growth and repair. Moreover, roles vital to systemic homeostasis include their storage and mobilization of retinoids, their emerging capacity for antigen presentation and induction of tolerance, as well as their emerging relationship to bone marrow-derived cells. As interest in this cell type intensifies, more surprises and mysteries are sure to unfold that will ultimately benefit our understanding of liver physiology and the diagnosis and treatment of liver disease.

2,419 citations