scispace - formally typeset
Search or ask a question
Author

Deyan Chen

Bio: Deyan Chen is an academic researcher from Northeastern University (China). The author has contributed to research in topics: Data security & Cloud testing. The author has an hindex of 1, co-authored 1 publications receiving 583 citations.

Papers
More filters
Proceedings ArticleDOI
23 Mar 2012
TL;DR: This paper provides a concise but all-round analysis on data security and privacy protection issues associated with cloud computing across all stages of data life cycle and describes future research work about dataSecurity and privacy Protection issues in cloud.
Abstract: It is well-known that cloud computing has many potential advantages and many enterprise applications and data are migrating to public or hybrid cloud. But regarding some business-critical applications, the organizations, especially large enterprises, still wouldn't move them to cloud. The market size the cloud computing shared is still far behind the one expected. From the consumers' perspective, cloud computing security concerns, especially data security and privacy protection issues, remain the primary inhibitor for adoption of cloud computing services. This paper provides a concise but all-round analysis on data security and privacy protection issues associated with cloud computing across all stages of data life cycle. Then this paper discusses some current solutions. Finally, this paper describes future research work about data security and privacy protection issues in cloud.

654 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The security issues that arise due to the very nature of cloud computing are detailed and the recent solutions presented in the literature to counter the security issues are presented.

694 citations

Journal ArticleDOI
TL;DR: This review introduces future innovations and a research agenda for cloud computing supporting the transformation of the volume, velocity, variety and veracity into values of Big Data for local to global digital earth science and applications.
Abstract: Big Data has emerged in the past few years as a new paradigm providing abundant data and opportunities to improve and/or enable research and decision-support applications with unprecedented value for digital earth applications including business, sciences and engineering. At the same time, Big Data presents challenges for digital earth to store, transport, process, mine and serve the data. Cloud computing provides fundamental support to address the challenges with shared computing resources including computing, storage, networking and analytical software; the application of these resources has fostered impressive Big Data advancements. This paper surveys the two frontiers – Big Data and cloud computing – and reviews the advantages and consequences of utilizing cloud computing to tackling Big Data in the digital earth and relevant science domains. From the aspects of a general introduction, sources, challenges, technology status and research opportunities, the following observations are offered: (i...

545 citations

Journal ArticleDOI
TL;DR: This paper surveys the works on cloud security issues, making a comprehensive review of the literature on the subject and proposes a taxonomy for their classification, addressing several key topics, namely vulnerabilities, threats, and attacks.
Abstract: In the last few years, the appealing features of cloud computing have been fueling the integration of cloud environments in the industry, which has been consequently motivating the research on related technologies by both the industry and the academia. The possibility of paying-as-you-go mixed with an on-demand elastic operation is changing the enterprise computing model, shifting on-premises infrastructures to off-premises data centers, accessed over the Internet and managed by cloud hosting providers. Regardless of its advantages, the transition to this computing paradigm raises security concerns, which are the subject of several studies. Besides of the issues derived from Web technologies and the Internet, clouds introduce new issues that should be cleared out first in order to further allow the number of cloud deployments to increase. This paper surveys the works on cloud security issues, making a comprehensive review of the literature on the subject. It addresses several key topics, namely vulnerabilities, threats, and attacks, proposing a taxonomy for their classification. It also contains a thorough review of the main concepts concerning the security state of cloud environments and discusses several open research topics.

423 citations

Journal ArticleDOI
TL;DR: This survey presents a comprehensive overview of the security issues for different factors affecting cloud computing, and encompasses the requirements for better security management and suggests 3-tier security architecture.

340 citations

Journal ArticleDOI
Wenqi Shi1, Sheng Zhou1, Zhisheng Niu1, Miao Jiang2, Lu Geng2 
TL;DR: In this paper, a joint device scheduling and resource allocation policy is proposed to maximize the model accuracy within a given total training time budget for latency constrained wireless FL, where a lower bound on the reciprocal of the training performance loss is derived.
Abstract: In federated learning (FL), devices contribute to the global training by uploading their local model updates via wireless channels. Due to limited computation and communication resources, device scheduling is crucial to the convergence rate of FL. In this paper, we propose a joint device scheduling and resource allocation policy to maximize the model accuracy within a given total training time budget for latency constrained wireless FL. A lower bound on the reciprocal of the training performance loss, in terms of the number of training rounds and the number of scheduled devices per round, is derived. Based on the bound, the accuracy maximization problem is solved by decoupling it into two sub-problems. First, given the scheduled devices, the optimal bandwidth allocation suggests allocating more bandwidth to the devices with worse channel conditions or weaker computation capabilities. Then, a greedy device scheduling algorithm is introduced, which selects the device consuming the least updating time obtained by the optimal bandwidth allocation in each step, until the lower bound begins to increase, meaning that scheduling more devices will degrade the model accuracy. Experiments show that the proposed policy outperforms state-of-the-art scheduling policies under extensive settings of data distributions and cell radius.

228 citations