scispace - formally typeset
Search or ask a question
Author

Deyue Yan

Bio: Deyue Yan is an academic researcher from Shanghai Jiao Tong University. The author has contributed to research in topics: Polymerization & Copolymer. The author has an hindex of 77, co-authored 544 publications receiving 23671 citations. Previous affiliations of Deyue Yan include East China Normal University & University of Mainz.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a couple-monomer methodology (CMM) is proposed for hyperbranched polymers, which is based on the in situ formation of ABn intermediates from specific monomer pairs.

1,896 citations

Journal ArticleDOI
TL;DR: The in situ ATRP (atom transfer radical polymerization) "grafting from" approach was successfully applied to graft poly(methyl methacrylate) (PMMA) onto the convex surfaces of multiwalled carbon nanotubes (MWNT).
Abstract: The in situ ATRP (atom transfer radical polymerization) “grafting from” approach was successfully applied to graft poly(methyl methacrylate) (PMMA) onto the convex surfaces of multiwalled carbon nanotubes (MWNT). The thickness of the coated polymer layers can be conveniently controlled by the feed ratio of MMA to preliminarily functionalized MWNT (MWNT-Br). The resulting MWNT-based polymer brushes were characterized and confirmed with FTIR, 1H NMR, SEM, TEM, and TGA. Moreover, the approach has been extended to the copolymerization system, affording novel hybrid core−shell nanoobjects with MWNT as the core and amphiphilic poly(methyl methacrylate)-block-poly(hydroxyethyl methacrylate) (PMMA-b-PHEMA) as the shell. The approach presented here may open an avenue for exploring and preparing novel carbon nanotubes-based nanomaterials and molecular devices with tailor-made structure, architecture, and properties.

641 citations

Journal ArticleDOI
TL;DR: This work develops a drug self-delivery system for cancer therapy, in which anticancer drugs can be delivered by themselves without any carriers, and synthesizes an amphiphilic drug-drug conjugate (ADDC) that self-assembles into nanoparticles in water and exhibits longer blood retention half-life compared with the free drugs.
Abstract: All drugs for cancer therapy face several transportation barriers on their tortuous journey to the action sites. To overcome these barriers, an effective drug delivery system for cancer therapy is imperative. Here, we develop a drug self-delivery system for cancer therapy, in which anticancer drugs can be delivered by themselves without any carriers. To demonstrate this unique approach, an amphiphilic drug–drug conjugate (ADDC) has been synthesized from the hydrophilic anticancer drug irinotecan (Ir) and the hydrophobic anticancer drug chlorambucil (Cb) via a hydrolyzable ester linkage. The amphiphilic Ir–Cb conjugate self-assembles into nanoparticles in water and exhibits longer blood retention half-life compared with the free drugs, which facilitates the accumulation of drugs in tumor tissues and promotes their cellular uptake. A benefit of the nanoscale characteristics of the Ir–Cb ADDC nanoparticles is that the multidrug resistance (MDR) of tumor cells can be overcome efficiently. After cellular inter...

598 citations

Journal ArticleDOI
Yongfeng Zhou1, Wei Huang1, Jinyao Liu1, Xinyuan Zhu1, Deyue Yan1 
TL;DR: The recent developments in HBP self‐assembly and their biomedical applications have been comprehensively reviewed.
Abstract: Hyperbranched polymers (HBPs) are highly branched macromolecules with a three-dimensional dendritic architecture. Due to their unique topological structure and interesting physical/chemical properties, HBPs have attracted wide attention from both academia and industry. In this paper, the recent developments in HBP self-assembly and their biomedical applications have been comprehensively reviewed. Many delicate supramolecular structures from zero-dimension (0D) to three-dimension (3D), such as micelles, fibers, tubes, vesicles, membranes, large compound vesicles and physical gels, have been prepared through the solution or interfacial self-assembly of amphiphilic HBPs. In addition, these supramolecular structures have shown promising applications in the biomedical areas including drug delivery, protein purification/detection/delivery, gene transfection, antibacterial/antifouling materials and cytomimetic chemistry. Such developments promote the interdiscipline researches among surpramolecular chemistry, biomedical chemistry, nano-technology and functional materials.

497 citations

Journal ArticleDOI
02 Jan 2004-Science
TL;DR: The macroscopic molecular self-assembly of an amphiphilic hyperbranched copolymer in acetone generated multiwalled tubes millimeters in diameter and centimeters in length that alternates between ordered hydrophobic domains and amorphous, partly irregular hydrophilic domains.
Abstract: The macroscopic molecular self-assembly of an amphiphilic hyperbranched copolymer in acetone generated multiwalled tubes millimeters in diameter and centimeters in length. The thickness of the tube walls approaches 400 nanometers, and the walls have an inhomogeneous lamella structure that alternates between ordered hydrophilic domains and amorphous, partly irregular hydrophilic domains.

430 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Recent advances in the design of nanoscale stimuli-responsive systems that are able to control drug biodistribution in response to specific stimuli, either exogenous (variations in temperature, magnetic field, ultrasound intensity, light or electric pulses) or endogenous (changes in pH, enzyme concentration or redox gradients).
Abstract: Spurred by recent progress in materials chemistry and drug delivery, stimuli-responsive devices that deliver a drug in spatial-, temporal- and dosage-controlled fashions have become possible. Implementation of such devices requires the use of biocompatible materials that are susceptible to a specific physical incitement or that, in response to a specific stimulus, undergo a protonation, a hydrolytic cleavage or a (supra)molecular conformational change. In this Review, we discuss recent advances in the design of nanoscale stimuli-responsive systems that are able to control drug biodistribution in response to specific stimuli, either exogenous (variations in temperature, magnetic field, ultrasound intensity, light or electric pulses) or endogenous (changes in pH, enzyme concentration or redox gradients).

4,836 citations

Journal ArticleDOI
TL;DR: Department of Materials Science, University of Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Triesteadays.
Abstract: Department of Materials Science, University of Patras, 26504 Rio Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Avenue, 116 35 Athens, Greece, Institut de Biologie Moleculaire et Cellulaire, UPR9021 CNRS, Immunologie et Chimie Therapeutiques, 67084 Strasbourg, France, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Trieste, Italy

3,886 citations