scispace - formally typeset
Search or ask a question
Author

Dezhong Yao

Bio: Dezhong Yao is an academic researcher from University of Electronic Science and Technology of China. The author has contributed to research in topics: Electroencephalography & Resting state fMRI. The author has an hindex of 54, co-authored 469 publications receiving 9794 citations. Previous affiliations of Dezhong Yao include Chinese Ministry of Education & Aalborg University.


Papers
More filters
Journal ArticleDOI
TL;DR: A method is proposed to approximately standardize the reference of scalp EEG recordings to a point at infinity, based on the fact that the use of scalp potentials to determine the neural electrical activities or their equivalent sources does not depend on the reference.
Abstract: The effect of an active reference in EEG recording is one of the oldest technical problems in EEG practice. In this paper, a method is proposed to approximately standardize the reference of scalp EEG recordings to a point at infinity. This method is based on the fact that the use of scalp potentials to determine the neural electrical activities or their equivalent sources does not depend on the reference, so we may approximately reconstruct the equivalent sources from scalp EEG recordings with a scalp point or average reference. Then the potentials referenced at infinity are approximately reconstructed from the equivalent sources. As a point at infinity is far from all the possible neural sources, this method may be considered as a reference electrode standardization technique (REST). The simulation studies performed with assumed neural sources included effects of electrode number, volume conductor model and noise on the performance of REST, and the significance of REST in EEG temporal analysis. The results showed that REST is potentially very effective for the most important superficial cortical region and the standardization could be especially important in recovering the temporal information of EEG recordings.

415 citations

Journal ArticleDOI
TL;DR: A coordinate-based meta-analysis motivates an empirical foundation for a disconnected large-scale brain networks model of schizophrenia in which the salience processing network (VAN) plays the core role, and its imbalanced communication with other functional networks may underlie the core difficulty of patients to differentiate self-representation and environmental salienceprocessing.
Abstract: Schizophrenia is a complex mental disorder with disorganized communication among large-scale brain networks, as demonstrated by impaired resting-state functional connectivity (rsFC). Individual rsFC studies, however, vary greatly in their methods and findings. We searched for consistent patterns of network dysfunction in schizophrenia by using a coordinate-based meta-analysis. Fifty-six seed-based voxel-wise rsFC datasets from 52 publications (2115 patients and 2297 healthy controls) were included in this meta-analysis. Then, coordinates of seed regions of interest (ROI) and between-group effects were extracted and coded. Seed ROIs were categorized into seed networks by their location within an a priori template. Multilevel kernel density analysis was used to identify brain networks in which schizophrenia was linked to hyper-connectivity or hypo-connectivity with each a priori network. Our results showed that schizophrenia was characterized by hypo-connectivity within the default network (DN, self-related thought), affective network (AN, emotion processing), ventral attention network (VAN, processing of salience), thalamus network (TN, gating information) and somatosensory network (SS, involved in sensory and auditory perception). Additionally, hypo-connectivity between the VAN and TN, VAN and DN, VAN and frontoparietal network (FN, external goal-directed regulation), FN and TN, and FN and DN were found in schizophrenia. Finally, the only instance of hyper-connectivity in schizophrenia was observed between the AN and VAN. Our meta-analysis motivates an empirical foundation for a disconnected large-scale brain networks model of schizophrenia in which the salience processing network (VAN) plays the core role, and its imbalanced communication with other functional networks may underlie the core difficulty of patients to differentiate self-representation (inner world) and environmental salience processing (outside world).

284 citations

Journal ArticleDOI
TL;DR: Findings indicated DMN abnormalities in patients with absence epilepsy, even during resting interictal durations without interdictal epileptic discharges, may reflect abnormal anatomo‐functional architectural integration in DMN, as a result of cognitive mental impairment and unconsciousness during absence seizure.
Abstract: Dysfunctional default mode network (DMN) has been observed in various mental disorders, including epilepsy (see review Broyd et al. (2009): Neurosci Biobehav Rev 33:279-296). Because interic- tal epileptic discharges may affect DMN, resting-state fMRI was used in this study to determine DMN functional connectivity in 14 healthy controls and 12 absence epilepsy patients. To avoid interictal epi- leptic discharge effects, testing was performed within interictal durations when there were no interictal epileptic discharges. Cross-correlation functional connectivity analysis with seed at posterior cingulate cortex, as well as region-wise calculation in DMN, revealed decreased integration within DMN in the absence epilepsy patients. Region-wise functional connectivity among the frontal, parietal, and tempo- ral lobe was significantly decreased in the patient group. Moreover, functional connectivity between the frontal and parietal lobe revealed a significant negative correlation with epilepsy duration. These findings indicated DMN abnormalities in patients with absence epilepsy, even during resting interictal durations without interictal epileptic discharges. Abnormal functional connectivity in absence epilepsy may reflect abnormal anatomo-functional architectural integration in DMN, as a result of cognitive mental impairment and unconsciousness during absence seizure. Hum Brain Mapp 00:000-000, 2010. V C 2010 Wiley-Liss, Inc.

232 citations

Journal ArticleDOI
TL;DR: Both information propagation patterns and activation difference in the brain were fused to improve the performance of emotional recognition to develop the effective human–computer interaction systems by adapting to human emotions in the real world applications.
Abstract: Objective: Spectral power analysis plays a predominant role in electroencephalogram-based emotional recognition. It can reflect activity differences among multiple brain regions. In addition to activation difference, different emotions also involve different large-scale network during related information processing. In this paper, both information propagation patterns and activation difference in the brain were fused to improve the performance of emotional recognition. Methods: We constructed emotion-related brain networks with phase locking value and adopted a multiple feature fusion approach to combine the compensative activation and connection information for emotion recognition. Results: Recognition results on three public emotional databases demonstrated that the combined features are superior to either single feature based on power distribution or network character. Furthermore, the conducted feature fusion analysis revealed the common characters between activation and connection patterns involved in the positive, neutral, and negative emotions for information processing. Significance: The proposed feasible combination of both information propagation patterns and activation difference in the brain is meaningful for developing the effective human–computer interaction systems by adapting to human emotions in the real world applications.

208 citations

Journal ArticleDOI
TL;DR: Steady-state visual evoked potentials (SSVEP) differences were strongly related to the frequency spectrum differences of the flickers and the stimulator was selected based on the complexity of the BCI system.

194 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations