scispace - formally typeset
Search or ask a question
Author

Dezso Sera

Other affiliations: Aalborg University
Bio: Dezso Sera is an academic researcher from Queensland University of Technology. The author has contributed to research in topics: Photovoltaic system & Maximum power point tracking. The author has an hindex of 32, co-authored 157 publications receiving 5244 citations. Previous affiliations of Dezso Sera include Aalborg University.


Papers
More filters
Proceedings ArticleDOI
04 Jun 2007
TL;DR: A PV panel model is built and tested, which is able to predict the panel behavior in different temperature and irradiance conditions, based on the single-diode five-parameters model.
Abstract: This work presents the construction of a model for a PV panel using the single-diode five-parameters model, based exclusively on data-sheet parameters. The model takes into account the series and parallel (shunt) resistance of the panel. The equivalent circuit and the basic equations of the PV cell/panel in Standard Test Conditions (STC)1 are shown, as well as the parameters extraction from the data-sheet values. The temperature dependence of the cell dark saturation current is expressed with an alternative formula, which gives better correlation with the datasheet values of the power temperature dependence. Based on these equations, a PV panel model, which is able to predict the panel behavior in different temperature and irradiance conditions, is built and tested.

773 citations

Journal ArticleDOI
TL;DR: A detailed analysis of the two most well-known hill-climbing maximum power point tracking algorithms: the perturb-and-observe (P&O) and incremental conductance (INC) reveals that there is no difference between the two.
Abstract: This paper presents a detailed analysis of the two most well-known hill-climbing maximum power point tracking (MPPT) algorithms: the perturb-and-observe (P&O) and incremental conductance (INC). The purpose of the analysis is to clarify some common misconceptions in the literature regarding these two trackers, therefore helping the selection process for a suitable MPPT for both researchers and industry. The two methods are thoroughly analyzed both from a mathematical and practical implementation point of view. Their mathematical analysis reveals that there is no difference between the two. This has been confirmed by experimental tests according to the EN 50530 standard, resulting in a deviation between their efficiencies of 0.13% in dynamic and as low as 0.02% under static conditions. The results show that despite the common opinion in the literature, the P&O and INC are equivalent.

670 citations

Journal ArticleDOI
TL;DR: Underlines weak points of standard reactive power strategies which are already imposed by certain grid codes, and introduces a new reactive power control method that is based on sensitivity analysis that combines two droop functions that are inherited from the standard cos φ(P) and Q(U) strategies.
Abstract: The main objective of this study is to increase the penetration level of photovoltaic (PV) power production in low-voltage (LV) grids by means of solar inverters with reactive power control capability. This paper underlines weak points of standard reactive power strategies which are already imposed by certain grid codes, and then, the study introduces a new reactive power control method that is based on sensitivity analysis. The sensitivity analysis shows that the same amount of reactive power becomes more effective for grid voltage support if the solar inverter is located at the end of a feeder. Based on this fundamental knowledge, a location-dependent power factor set value can be assigned to each inverter, and the grid voltage support can be achieved with less total reactive power consumption. In order to prevent unnecessary reactive power absorption from the grid during admissible voltage range or to increase reactive power contribution from the inverters that are closest to the transformer during grid overvoltage condition, the proposed method combines two droop functions that are inherited from the standard cos φ(P) and Q(U) strategies. Its performance comparison in terms of grid losses and voltage variation with different reactive power strategies is provided by modeling and simulating a real suburban LV network.

468 citations

Journal ArticleDOI
TL;DR: The simulations and experimental results show that the proposed dP-P&O MPPT provides a quick and accurate tracking even in very fast changing environmental conditions.
Abstract: This paper presents a high-performance maximum power point tracker (MPPT) optimized for fast cloudy conditions, e.g., rapidly changing irradiation on the photovoltaic panels. The rapidly changing conditions are tracked by an optimized hill-climbing MPPT method called dP-P&O. This algorithm separates the effects of the irradiation change from the effect of the tracker's perturbation and uses this information to optimize the tracking according to the irradiation change. The knowledge of the direction of the irradiation change enables the MPPT to use different optimized tracking schemes for the different cases of increasing, decreasing, or steady irradiance. When the irradiance is changing rapidly this strategy leads to faster and better tracking, while in steady-state conditions it leads to lower oscillations around the MPP. The simulations and experimental results show that the proposed dP-P&O MPPT provides a quick and accurate tracking even in very fast changing environmental conditions.

440 citations

Proceedings ArticleDOI
18 Nov 2008
TL;DR: In this article, a hill-climbing maximum power point tracker (MPPT) was proposed for fast cloudy conditions, e.g. rapidly changing irradiation on the PV panels.
Abstract: This work presents a high performance Maximum Power Point Tracker (MPPT) optimized for fast cloudy conditions, e.g. rapidly changing irradiation on the PV panels. The rapidly changing conditions are tracked by an optimized hill-climbing MPPT method, called dP-P&O. This algorithm separates the effects of the irradiation change from the effect of the trackerpsilas perturbation, and uses this information to optimize the tracking according to the irradiation change. The knowledge of the direction of the irradiance change enables the MPPT to use different, optimized tracking schemes for the different cases of increase, decrease or steady irradiance. This strategy leads to faster and better tracking when the irradiance is changing rapidly, and lower oscillations around the MPP in steady-state conditions. The simulations and experimental results show that the proposed dP-P&O MPPT provides a quick and accurate tracking even in very fast changing environmental conditions.

235 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a method of modeling and simulation of photovoltaic arrays by adjusting the curve at three points: open circuit, maximum power, and short circuit.
Abstract: This paper proposes a method of modeling and simulation of photovoltaic arrays. The main objective is to find the parameters of the nonlinear I-V equation by adjusting the curve at three points: open circuit, maximum power, and short circuit. Given these three points, which are provided by all commercial array data sheets, the method finds the best I-V equation for the single-diode photovoltaic (PV) model including the effect of the series and parallel resistances, and warranties that the maximum power of the model matches with the maximum power of the real array. With the parameters of the adjusted I-V equation, one can build a PV circuit model with any circuit simulator by using basic math blocks. The modeling method and the proposed circuit model are useful for power electronics designers who need a simple, fast, accurate, and easy-to-use modeling method for using in simulations of PV systems. In the first pages, the reader will find a tutorial on PV devices and will understand the parameters that compose the single-diode PV model. The modeling method is then introduced and presented in details. The model is validated with experimental data of commercial PV arrays.

3,811 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive review of the MPPT techniques applied to photovoltaic (PV) power system available until January, 2012 is provided, which is intended to serve as a convenient reference for future MPPT users in PV systems. But, confusion lies while selecting a MPPT as every technique has its own merits and demerits.
Abstract: This paper provides a comprehensive review of the maximum power point tracking (MPPT) techniques applied to photovoltaic (PV) power system available until January, 2012. A good number of publications report on different MPPT techniques for a PV system together with implementation. But, confusion lies while selecting a MPPT as every technique has its own merits and demerits. Hence, a proper review of these techniques is essential. Unfortunately, very few attempts have been made in this regard, excepting two latest reviews on MPPT [Salas, 2006], [Esram and Chapman, 2007]. Since, MPPT is an essential part of a PV system, extensive research has been revealed in recent years in this field and many new techniques have been reported to the list since then. In this paper, a detailed description and then classification of the MPPT techniques have made based on features, such as number of control variables involved, types of control strategies employed, types of circuitry used suitably for PV system and practical/commercial applications. This paper is intended to serve as a convenient reference for future MPPT users in PV systems.

1,584 citations

Journal ArticleDOI
09 Oct 2006
TL;DR: The proportional-resonant (PR) controllers and filters, and their suitability for current/voltage control of grid-connected converters, are described in this article.
Abstract: The recently introduced proportional-resonant (PR) controllers and filters, and their suitability for current/voltage control of grid-connected converters, are described. Using the PR controllers, the converter reference tracking performance can be enhanced and previously known shortcomings associated with conventional PI controllers can be alleviated. These shortcomings include steady-state errors in single-phase systems and the need for synchronous d-q transformation in three-phase systems. Based on similar control theory, PR filters can also be used for generating the harmonic command reference precisely in an active power filter, especially for single-phase systems, where d-q transformation theory is not directly applicable. Another advantage associated with the PR controllers and filters is the possibility of implementing selective harmonic compensation without requiring excessive computational resources. Given these advantages and the belief that PR control will find wide-ranging applications in grid-interfaced converters, PR control theory is revised in detail with a number of practical cases that have been implemented previously, described clearly to give a comprehensive reference on PR control and filtering.

1,483 citations