scispace - formally typeset
Search or ask a question
Author

Dhanya Haridas

Bio: Dhanya Haridas is an academic researcher from University of Nebraska Medical Center. The author has contributed to research in topics: Pancreatic cancer & Metastasis. The author has an hindex of 14, co-authored 16 publications receiving 1332 citations.
Topics: Pancreatic cancer, Metastasis, Cancer, CA19-9, MUC1

Papers
More filters
Journal ArticleDOI
TL;DR: A further understanding of the system is required to develop an effective anticancer regimen and a combination therapy that comprises an anti-EGFR and a chemotherapeutic/chemopreventive agent will exhibit a multi-pronged approach that can be developed into a highly attractive and specific molecular oriented remedy.
Abstract: Introduction: Cancer is a devastating disease; however, several therapeutic advances have recently been made, wherein EGFR and its family members have emerged as useful biomarkers and therapeutic targets. EGFR, a transmembrane glycoprotein is a member of the ERBB receptor tyrosine kinase superfamily. EGFR binds to its cognate ligand EGF, which further induces tyrosine phosphorylation and receptor dimerization with other family members leading to enhanced uncontrolled proliferation. Several anti-EGFR therapies such as monoclonal antibodies and tyrosine kinase inhibitors have been developed, which has enabled clinicians to identify and treat specific patient cohorts. Areas covered: This review covers the basic mechanism of EGFR activation and the role of EGFR signaling in cancer progression. Furthermore, current developments made toward targeting the EGFR signaling pathway for the treatment of epithelial cancers and a summary of the various anti-EGFR therapeutic agents that are currently in use are also pre...

704 citations

Journal ArticleDOI
16 Feb 2012-Oncogene
TL;DR: The results suggest that MUC16 has a dual role in breast cancer cell proliferation by interacting with JAK2 and by inhibiting the apoptotic process through downregulation of TRAIL.
Abstract: MUC16/CA125 is a tumor marker currently used in clinics for the follow-up of patients with ovarian cancer. However, MUC16 expression is not entirely restricted to ovarian malignancies and has been reported in other cancers including breast cancer. Although it is well established as a biomarker, function of MUC16 in cancer remains to be elucidated. In the present study, we investigated the role of MUC16 in breast cancer and its underlying mechanisms. Interestingly, our results showed that MUC16 is overexpressed in breast cancer tissues whereas not expressed in non-neoplastic ducts. Further, stable knockdown of MUC16 in breast cancer cells (MDA MB 231 and HBL100) resulted in significant decrease in the rate of cell growth, tumorigenicity and increased apoptosis. In search of a mechanism for breast cancer cell proliferation we found that MUC16 interacts with the ezrin/radixin/moesin domain-containing protein of Janus kinase (JAK2) as demonstrated by the reciprocal immunoprecipitation method. These interactions mediate phosphorylation of STAT3 (Tyr705), which might be a potential mechanism for MUC16-induced proliferation of breast cancer cells by a subsequent co-transactivation of transcription factor c-Jun. Furthermore, silencing of MUC16 induced G2/M arrest in breast cancer cells through downregulation of Cyclin B1 and decreased phosphorylation of Aurora kinase A. This in turn led to enhanced apoptosis in the MUC16-knockdown breast cancer cells through Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated extrinsic apoptotic pathway with the help of c-Jun N-terminal kinase signaling. Collectively, our results suggest that MUC16 has a dual role in breast cancer cell proliferation by interacting with JAK2 and by inhibiting the apoptotic process through downregulation of TRAIL.

117 citations

Journal ArticleDOI
31 Oct 2011-PLOS ONE
TL;DR: Analysis of the expression of MUC16 during the initiation, progression and metastasis of pancreatic cancer and identified PC cell lines that express M UC16, which can be used in future studies to elucidate its functional role in PC.
Abstract: MUC16 (CA125) belongs to a family of high-molecular weight O-glycosylated proteins known as mucins. While MUC16 is well known as a biomarker in ovarian cancer, its expression pattern in pancreatic cancer (PC), the fourth leading cause of cancer related deaths in the United States, remains unknown. The aim of our study was to analyze the expression of MUC16 during the initiation, progression and metastasis of PC for possible implication in PC diagnosis, prognosis and therapy. In this study, a microarray containing tissues from healthy and PC patients was used to investigate the differential protein expression of MUC16 in PC. MUC16 mRNA levels were also measured by RT-PCR in the normal human pancreatic, pancreatitis, and PC tissues. To investigate its expression pattern during PC metastasis, tissue samples from the primary pancreatic tumor and metastases (from the same patient) in the lymph nodes, liver, lung and omentum from Stage IV PC patients were analyzed. To determine its association in the initiation of PC, tissues from PC patients containing pre-neoplastic lesions of varying grades were stained for MUC16. Finally, MUC16 expression was analyzed in 18 human PC cell lines. MUC16 is not expressed in the normal pancreatic ducts and is strongly upregulated in PC and detected in pancreatitis tissue. It is first detected in the high-grade pre-neoplastic lesions preceding invasive adenocarcinoma, suggesting that its upregulation is a late event during the initiation of this disease. MUC16 expression appears to be stronger in metastatic lesions when compared to the primary tumor, suggesting a role in PC metastasis. We have also identified PC cell lines that express MUC16, which can be used in future studies to elucidate its functional role in PC. Altogether, our results reveal that MUC16 expression is significantly increased in PC and could play a potential role in the progression of this disease.

112 citations

Journal ArticleDOI
TL;DR: Mulins are emerging as attractive targets for developing novel therapeutic approaches for lung cancer, and several strategies targeting mucin expression and function are currently being investigated to control lung cancer progression.

105 citations

Journal ArticleDOI
TL;DR: In this review, the various aspects of MUC16 are discussed, which include its discovery, structure, and biological significance both in benign and malignant conditions with an attempt to dissect its functional relevance.
Abstract: MUC16 is a high-molecular-weight glycoprotein that is expressed by the various epithelial cell surfaces of the human body to protect the cell layer from a myriad of insults. It is the largest mucin known to date, with an ∼22,152 aa sequence. Structurally, MUC16 is characterized into 3 distinct domains: the amino terminal, the tandem repeat, and the carboxyl terminal domain, with each domain having unique attributes. The extracellular portion of MUC16 is shed into the bloodstream and serves as a biomarker for diagnosing and monitoring patients with cancer; however, its functional role in cancer is yet to be elucidated. Several factors contribute to this challenge, which include the large protein size; the extensive glycosylation that the protein undergoes, which confers functional heterogeneity; lack of specific antibodies that detect the unique domains of MUC16; and the existence of splicing variants. Despite these limitations, MUC16 has been established as a molecule of significant application in cancer....

90 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Several malignancies are associated with the mutation or increased expression of members of the ErbB family including lung, breast, stomach, colorectal, head and neck, and pancreatic carcinomas and glioblastoma

1,022 citations

Journal Article
TL;DR: Investigations compel the view that the ratio of the vital capacity to the body length, trunk length, chest circumference, surface area or weight or any combination of these measurements, is too variable to admit of any workable standard or normal value.
Abstract: These investigations and several others that have beenpublishedwithin recentyears compel us us to hold the view that the ratio of the vital capacity to the body length, trunk length, chest circumference,surfacearea or weight or any combination of thesemeasurements, is too variable to admit of any workable standardor normal value. On the other hand the vital capacity of each individual, after he had becomeaccustomedto the use of the spirometer,will be found to be subjectto but small variations as long as good health is maintained. Thereseems to beevidenceto show that a reductionin the vital capacityis ofen the first sign of a progressivedamageto the respiratorytissue.

986 citations

Journal ArticleDOI
23 Nov 2017-Nature
TL;DR: In this paper, the authors used genetic, immunohistochemical and transcriptional immunoprofiling, computational biophysics, and functional assays to identify T-cell antigens in long-term survivors of pancreatic cancer.
Abstract: Pancreatic ductal adenocarcinoma is a lethal cancer with fewer than 7% of patients surviving past 5 years. T-cell immunity has been linked to the exceptional outcome of the few long-term survivors, yet the relevant antigens remain unknown. Here we use genetic, immunohistochemical and transcriptional immunoprofiling, computational biophysics, and functional assays to identify T-cell antigens in long-term survivors of pancreatic cancer. Using whole-exome sequencing and in silico neoantigen prediction, we found that tumours with both the highest neoantigen number and the most abundant CD8+ T-cell infiltrates, but neither alone, stratified patients with the longest survival. Investigating the specific neoantigen qualities promoting T-cell activation in long-term survivors, we discovered that these individuals were enriched in neoantigen qualities defined by a fitness model, and neoantigens in the tumour antigen MUC16 (also known as CA125). A neoantigen quality fitness model conferring greater immunogenicity to neoantigens with differential presentation and homology to infectious disease-derived peptides identified long-term survivors in two independent datasets, whereas a neoantigen quantity model ascribing greater immunogenicity to increasing neoantigen number alone did not. We detected intratumoural and lasting circulating T-cell reactivity to both high-quality and MUC16 neoantigens in long-term survivors of pancreatic cancer, including clones with specificity to both high-quality neoantigens and predicted cross-reactive microbial epitopes, consistent with neoantigen molecular mimicry. Notably, we observed selective loss of high-quality and MUC16 neoantigenic clones on metastatic progression, suggesting neoantigen immunoediting. Our results identify neoantigens with unique qualities as T-cell targets in pancreatic ductal adenocarcinoma. More broadly, we identify neoantigen quality as a biomarker for immunogenic tumours that may guide the application of immunotherapies.

774 citations

Journal Article
TL;DR: Findings provide direct evidence that let-7 acts as a tumor suppressor gene in the lung and indicate that this miRNA may be useful as a novel therapeutic agent in lung cancer.
Abstract: LB-194 Lung cancer is the most prevalent form of cancer worldwide and accounts for the most cancer deaths. MicroRNAs (miRNAs) are small, non-protein coding RNAs that have recently emerged as important regulators of gene expression and direct proper cellular growth, differentiation and cell death - all mechanisms that go awry in cancer. The let-7 miRNA is postulated to function as a tumor suppressor gene in a variety of human tissues, particularly in the lung, by negatively regulating the post-transcriptional expression of multiple oncogenes including RAS, MYC, and HMGA2, as well as other cell cycle progression genes. Here we have used both in vitro and in vivo approaches to show that let-7 directly represses cancer growth in the lung. We show that let-7 inhibits the growth of multiple human lung cancer cell lines in culture, as well as the growth of lung cancer cell xenografts in immunodeficient mice. Using the established Lox-Stop-Lox K-ras mouse lung cancer model, we find that intranasal let-7 administration can reduce tumor formation in vivo in the lungs of animals expressing a G12D activating mutation for the K-ras oncogene. These findings support the notion that let-7 functions as a tumor suppressor in the lung and indicates that this miRNA could be used as a therapeutic agent to treat lung cancer.

556 citations