scispace - formally typeset
Search or ask a question
Author

Dharmendra Kumar Bal

Bio: Dharmendra Kumar Bal is an academic researcher from VIT University. The author has contributed to research in topics: Controlled release & Coalescence (physics). The author has an hindex of 5, co-authored 16 publications receiving 64 citations. Previous affiliations of Dharmendra Kumar Bal include Indian Institutes of Technology & Indian Institute of Technology Kharagpur.

Papers
More filters
Journal ArticleDOI
TL;DR: The results revealed that the alginate scaffold exhibited a controlled release profile and that the corresponding release mechanism followed a first-order kinetic model.
Abstract: Alginate scaffold has been used widely for controlled release applications because of its ability to provide three-dimensional supports for formation of a gel matrix. Alginate gel scaffolds for drug delivery matrices were prepared using a fluidic device. N2 gas was used in the fluidic device to generate bubbles in the gel layer. The hydrogel matrices with induced voids were compared with hydrogel matrices without voids. This study attempted to identify the release mechanism of vitamin B12 from the two types of prepared scaffolds, and the data were fitted with different release kinetic models. The results revealed that the alginate scaffold exhibited a controlled release profile and that the corresponding release mechanism followed a first-order kinetic model. Hydrogel scaffolds fabricated with biocompatible polymers using fluidic methods could be promising for controlled drug delivery systems.

17 citations

Journal ArticleDOI
TL;DR: In this paper, a co-flow arrangement that generates bubbles to form a hydrogel scaffold was described, where the flow arrangement utilizes the orifice in throat configuration for a second squeeze on the bubble that resulted in further split into the bubbles of smaller size.

12 citations

Journal ArticleDOI
TL;DR: In this paper, a partially hydrolyzed polyacrylamide was crosslinked by chromium triacetate in presence of alpha olefin sulfonate as surfactant.

10 citations

Journal ArticleDOI
TL;DR: The solute release behavior of alginate and chitosan films with embedded voids of sub-millimeter dimensions is described and the enhancement in diffusion coefficient due to the presence of voids is discussed in this article.

9 citations


Cited by
More filters
11 Jun 2010
Abstract: The validity of the cubic law for laminar flow of fluids through open fractures consisting of parallel planar plates has been established by others over a wide range of conditions with apertures ranging down to a minimum of 0.2 µm. The law may be given in simplified form by Q/Δh = C(2b)3, where Q is the flow rate, Δh is the difference in hydraulic head, C is a constant that depends on the flow geometry and fluid properties, and 2b is the fracture aperture. The validity of this law for flow in a closed fracture where the surfaces are in contact and the aperture is being decreased under stress has been investigated at room temperature by using homogeneous samples of granite, basalt, and marble. Tension fractures were artificially induced, and the laboratory setup used radial as well as straight flow geometries. Apertures ranged from 250 down to 4µm, which was the minimum size that could be attained under a normal stress of 20 MPa. The cubic law was found to be valid whether the fracture surfaces were held open or were being closed under stress, and the results are not dependent on rock type. Permeability was uniquely defined by fracture aperture and was independent of the stress history used in these investigations. The effects of deviations from the ideal parallel plate concept only cause an apparent reduction in flow and may be incorporated into the cubic law by replacing C by C/ƒ. The factor ƒ varied from 1.04 to 1.65 in these investigations. The model of a fracture that is being closed under normal stress is visualized as being controlled by the strength of the asperities that are in contact. These contact areas are able to withstand significant stresses while maintaining space for fluids to continue to flow as the fracture aperture decreases. The controlling factor is the magnitude of the aperture, and since flow depends on (2b)3, a slight change in aperture evidently can easily dominate any other change in the geometry of the flow field. Thus one does not see any noticeable shift in the correlations of our experimental results in passing from a condition where the fracture surfaces were held open to one where the surfaces were being closed under stress.

1,557 citations

01 Jan 1912

1,225 citations

Journal Article
TL;DR: The International Nanofluid Property Benchmark Exercise (INPBE) as discussed by the authors was held in 1998, where the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or "nanofluids" was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady state methods, and optical methods.
Abstract: This article reports on the International Nanofluid Property Benchmark Exercise, or INPBE, in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or “nanofluids,” was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady-state methods, and optical methods. The nanofluids tested in the exercise were comprised of aqueous and nonaqueous basefluids, metal and metal oxide particles, near-spherical and elongated particles, at low and high particle concentrations. The data analysis reveals that the data from most organizations lie within a relatively narrow band (±10% or less) about the sample average with only few outliers. The thermal conductivity of the nanofluids was found to increase with particle concentration and aspect ratio, as expected from classical theory. There are (small) systematic differences in the absolute values of the nanofluid thermal conductivity among the various experimental approaches; however, such differences tend to disappear when the data are normalized to the measured thermal conductivity of the basefluid. The effective medium theory developed for dispersed particles by Maxwell in 1881 and recently generalized by Nan et al. [J. Appl. Phys. 81, 6692 (1997)], was found to be in good agreement with the experimental data, suggesting that no anomalous enhancement of thermal conductivity was achieved in the nanofluids tested in this exercise.

881 citations

Journal ArticleDOI
TL;DR: In this paper, a review of all the types of ODS catalysts along with their synthetic methods, reactivity and mechanistic insights are reviewed, revealing the merits and demerits related to highlighting catalytic ODS as a replacement or complementary to HDS.
Abstract: Harvesting clean energy from fuel feedstocks is of paramount significance in the field of environmental science. In this dynamic area, desulfurization provides a valuable contribution by eliminating sulfur compounds from fuel feedstocks to ensure the utilization of fuels without the emission of toxic sulfur oxides (SOx gases). Nonetheless, the inadequacy of the current industrial technique (hydrodesulfurization, HDS) in the removal of refractory sulfur (RS) compounds and the stringent rules imposed on the fuel sulfur level have kindled research on other desulfurization methods like oxidative desulfurization (ODS). With the capacity of eliminating RS compounds under mild conditions, ODS is endorsed as a suitable replacement or complementary to HDS. ODS, in general, consists of two steps: (i) oxidation and (ii) extraction. The oxidation of sulfur compounds is carried out using a suitable catalyst (hereafter termed as an ODS catalyst) in the presence of an oxidant. Choosing a suitable ODS catalyst for industrial applications is still a quest among the various types of catalysts reported so far. With this outline, herein, all the types of ODS catalysts along with their synthetic methods, reactivity and mechanistic insights are reviewed. The activity of ODS catalysts could be influenced by factors like the type of RS compound, solvent, fuel, etc. and those factors are reviewed. The effects of ionic liquids, light, and ultrasound on the performance of ODS catalysts are also briefly summarized. The opportunities and challenges for ODS catalysts are comprehensively explicated in the end. Through this review, systematic information about the types of ODS catalysts including the basic definition, preparative methods, reactivity and mechanism can be comprehended. Furthermore, this review reveals the merits and demerits related to highlighting catalytic ODS as a replacement or complementary to HDS.

203 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarized the gelation mechanisms of alginate induced by different cations, mainly including H+, Ca2+, Ba2+, Cu2+, Sr2+, Zn2+, Fe2+, Mn2+, Al3+, and Fe3+.

104 citations