scispace - formally typeset
Search or ask a question
Author

Dheeraj Kumar Khatod

Bio: Dheeraj Kumar Khatod is an academic researcher from Indian Institute of Technology Roorkee. The author has contributed to research in topics: Distributed generation & AC power. The author has an hindex of 20, co-authored 55 publications receiving 2042 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present the state of the art of research work carried out on the optimal planning of distributed generation (DG) systems under different aspects, such as the best technology to be used, the number and the capacity of the units, the best location, the type of network connection, etc.
Abstract: This paper attempts to present the state of art of research work carried out on the optimal planning of distributed generation (DG) systems under different aspects. There are number of important issues to be considered while carrying out studies related to the planning and operational aspects of DG. The planning of the electric system with the presence of DG requires the definition of several factors, such as: the best technology to be used, the number and the capacity of the units, the best location, the type of network connection, etc. The impact of DG in system operating characteristics, such as electric losses, voltage profile, stability and reliability needs to be appropriately evaluated. For that reason, the use of an optimization method capable of indicating the best solution for a given distribution network can be very useful for the system planning engineer, when dealing with the increase of DG penetration that is happening nowadays. The selection of the best places for installation and the preferable size of the DG units in large distribution systems is a complex combinatorial optimization problem. This paper aims at providing a review of the relevant aspects related to DG and its impact that DG might have on the operation of distributed networks. This paper covers the review of basics of DG, DG definition, current status of DG technologies, potential advantages and disadvantages, review for optimal placement of DG systems, optimizations techniques/methodologies used in optimal planning of DG in distribution systems. An attempt has been made to judge that which methodologies/techniques are suitable for optimal placement of DG systems based on the available literature and detail comparison(s) of each one.

351 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the classical and heuristic approaches for optimal sizing and placement of DG units in distribution networks and study their impacts on utilities and customers is presented, and an attempt has also been made to compare the analytical (classical) and meta-heuristic techniques for optimal size and siting of DG in distribution network.
Abstract: To extract the maximum potential advantages in light of environmental, economical and technical aspects, the optimum installation and sizing of Distributed Generation (DG) in distribution network has always been challenging for utilities as well as customers. The installation of DG would be of maximum benefit where setting up of central power generating units are not practical, or in remote and small areas where the installation of transmission lines or availability of unused land is out of question. The objective of optimal installation of DG in distribution system is to achieve proper operation of distribution networks with minimization of the system losses, improvement of the voltage profile, enhanced system reliability, stability and loadability etc. In this respect analytical (classical) methods, although well-matched for small systems, perform adversely for large and complex objective functions. Unlike the analytical (classical) methods, the intelligent techniques for optimal sizing and siting of DGs are speedy, possess good convergence characteristics, and are well suited for large and complex systems. However, to find a global optimal solution of complex multi-objective problems, a hybrid of two or more meta-heuristic optimization techniques give more effective and reliable solution. This paper presents the fundamentals of DG and DG technologies review the classical and heuristic approaches for optimal sizing and placement of DG units in distribution networks and study their impacts on utilities and customers. An attempt has also been made to compare the analytical (classical) and meta-heuristic techniques for optimal sizing and siting of DG in distribution networks. The present study can contribute meaningful knowledge and assist as a reference for investigators and utility engineers on issues to be considered for optimal sizing and siting of DG units in distribution systems.

266 citations

Journal ArticleDOI
TL;DR: In this article, a method based on analytical approach for optimal allocation (sizing and siting) of DG and capacitor with the objective to minimize the total real power loss subjected to equality and inequality constraints in the distribution network is presented.

240 citations

Journal ArticleDOI
TL;DR: In this article, an evolutionary programming (EP) based technique has been presented for the optimal placement of distributed generation (DG) units energized by renewable energy resources (wind and solar) in a radial distribution system.
Abstract: An evolutionary programming (EP) based technique has been presented for the optimal placement of distributed generation (DG) units energized by renewable energy resources (wind and solar) in a radial distribution system. The correlation between load and renewable resources has been nullified by dividing the study period into several segments and treating each segment independently. To handle the uncertainties associated with load and renewable resources, probabilistic techniques have been used. Two operation strategies, namely “turning off wind turbine generator” and “clipping wind turbine generator output”, have also been adopted to restrict the wind power dispatch to a specified fraction of system load for system stability consideration. To reduce the search space and thereby to minimize the computational burden, a sensitivity analysis technique has been employed which gives a set of locations suitable for DG placement. For the proposed EP based approach, an index based scheme has also been developed to generate the population ensuring the feasibility of each individual and thus considerably reducing the computational time. The developed technique has been applied to a 12.66-kV, 69-bus distribution test system. The solutions result in significant loss reduction and voltage profile improvement.

236 citations

Journal ArticleDOI
TL;DR: In this paper, the optimal siting and sizing of distributed generation units in balanced radial distribution network to minimize the power loss of the system is presented, which is based on minimizing the loss associated with the active and reactive component of branch currents by placing the DG at various locations.

194 citations


Cited by
More filters
01 Jan 2016

1,633 citations

Journal ArticleDOI
TL;DR: In this article, the status and current trends of energy consumption, CO2 emissions and energy policies in the residential sector, both globally and in those ten countries, were reviewed, and it was found that global residential energy consumption grew by 14% from 2000 to 2011, where population, urbanization and economic growth have been the main driving factors.
Abstract: Climate change and global warming as the main human societies’ threats are fundamentally associated with energy consumption and GHG emissions. The residential sector, representing 27% and 17% of global energy consumption and CO2 emissions, respectively, has a considerable role to mitigate global climate change. Ten countries, including China, the US, India, Russia, Japan, Germany, South Korea, Canada, Iran, and the UK, account for two-thirds of global CO2 emissions. Thus, these countries’ residential energy consumption and GHG emissions have direct, significant effects on the world environment. The aim of this paper is to review the status and current trends of energy consumption, CO2 emissions and energy policies in the residential sector, both globally and in those ten countries. It was found that global residential energy consumption grew by 14% from 2000 to 2011. Most of this increase has occurred in developing countries, where population, urbanization and economic growth have been the main driving factors. Among the ten studied countries, all of the developed ones have shown a promising trend of reduction in CO2 emissions, apart from the US and Japan, which showed a 4% rise. Globally, the residential energy market is dominated by traditional biomass (40% of the total) followed by electricity (21%) and natural gas (20%), but the total proportion of fossil fuels has decreased over the past decade. Energy policy plays a significant role in controlling energy consumption. Different energy policies, such as building energy codes, incentives, energy labels have been employed by countries. Those policies can be successful if they are enhanced by making them mandatory, targeting net-zero energy building, and increasing public awareness about new technologies. However, developing countries, such as China, India and Iran, still encounter with considerable growth in GHG emissions and energy consumption, which are mostly related to the absence of strong, efficient policy.

1,212 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive literature review of AC and DC microgrid (MG) systems in connection with distributed generation (DG) units using renewable energy sources (RESs), energy storage systems (ESS) and loads.
Abstract: This paper presents the latest comprehensive literature review of AC and DC microgrid (MG) systems in connection with distributed generation (DG) units using renewable energy sources (RESs), energy storage systems (ESS) and loads. A survey on the alternative DG units' configurations in the low voltage AC (LVAC) and DC (LVDC) distribution networks with several applications of microgrid systems in the viewpoint of the current and the future consumer equipments energy market is extensively discussed. Based on the economical, technical and environmental benefits of the renewable energy related DG units, a thorough comparison between the two types of microgrid systems is provided. The paper also investigates the feasibility, control and energy management strategies of the two microgrid systems relying on the most current research works. Finally, the generalized relay tripping currents are derived and the protection strategies in microgrid systems are addressed in detail. From this literature survey, it can be revealed that the AC and DC microgrid systems with multiconverter devices are intrinsically potential for the future energy systems to achieve reliability, efficiency and quality power supply.

1,004 citations

Journal ArticleDOI
TL;DR: In this article, an extensive review on various issues related to Integrated Renewable Energy System (IRES) based power generation is presented, including integration configurations, storage options, sizing methodologies and system control for energy flow management.
Abstract: Uneconomical extension of the grid has led to generation of electric power at the end user facility and has been proved to be cost effective and to an extent efficient. With augmented significance on eco-friendly technologies the use of renewable energy sources such as micro-hydro, wind, solar, biomass and biogas is being explored. This paper presents an extensive review on various issues related to Integrated Renewable Energy System (IRES) based power generation. Issues related to integration configurations, storage options, sizing methodologies and system control for energy flow management are discussed in detail. For stand-alone applications integration of renewable energy sources, performed through DC coupled, AC coupled or hybrid DC–AC coupled configurations, are studied in detail. Based on the requirement of storage duration in isolated areas, storage technology options can be selected for integrated systems. Uncertainties involved in designing an effective IRES based power generation system for isolated areas is accounted due to highly dynamic nature of availability of sources and the demand at site. Different methodologies adopted and reported in literature for sizing of the system components are presented. Distributed control, centralized and hybrid control schemes for energy flow management in IRES have also been discussed.

611 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a comprehensive review of various aspects of hybrid renewable energy system (HRES) including prefeasibility analysis, optimum sizing, modeling, control aspects and reliability issues.
Abstract: The demand for electricity is increasing day by day, which cannot be fulfilled by non-renewable energy sources alone. Renewable energy sources such as solar and wind are omnipresent and environmental friendly. The renewable emulnergy sources are emerging options to fulfill the energy demand, but unreliable due to the stochastic nature of their occurrence. Hybrid renewable energy system (HRES) combines two or more renewable energy sources like wind turbine and solar system. The objective of this paper is to present a comprehensive review of various aspects of HRES. This paper discusses prefeasibility analysis, optimum sizing, modeling, control aspects and reliability issues. The application of evolutionary technique and game theory in hybrid renewable energy is also presented in this paper.

573 citations