scispace - formally typeset
Search or ask a question
Author

Di Huang

Bio: Di Huang is an academic researcher from Wuhan University. The author has contributed to research in topics: Guideline & Critical appraisal. The author has an hindex of 7, co-authored 11 publications receiving 1783 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This rapid advice guideline is suitable for the first frontline doctors and nurses, managers of hospitals and healthcare sections, community residents, public health persons, relevant researchers, and all person who are interested in the 2019-nCoV.
Abstract: In December 2019, a new type viral pneumonia cases occurred in Wuhan, Hubei Province; and then named “2019 novel coronavirus (2019-nCoV)” by the World Health Organization (WHO) on 12 January 2020. For it is a never been experienced respiratory disease before and with infection ability widely and quickly, it attracted the world’s attention but without treatment and control manual. For the request from frontline clinicians and public health professionals of 2019-nCoV infected pneumonia management, an evidence-based guideline urgently needs to be developed. Therefore, we drafted this guideline according to the rapid advice guidelines methodology and general rules of WHO guideline development; we also added the first-hand management data of Zhongnan Hospital of Wuhan University. This guideline includes the guideline methodology, epidemiological characteristics, disease screening and population prevention, diagnosis, treatment and control (including traditional Chinese Medicine), nosocomial infection prevention and control, and disease nursing of the 2019-nCoV. Moreover, we also provide a whole process of a successful treatment case of the severe 2019-nCoV infected pneumonia and experience and lessons of hospital rescue for 2019-nCoV infections. This rapid advice guideline is suitable for the first frontline doctors and nurses, managers of hospitals and healthcare sections, community residents, public health persons, relevant researchers, and all person who are interested in the 2019-nCoV.

1,783 citations

Journal ArticleDOI
Lin-Lu Ma1, Yun-Yun Wang1, Zhi-Hua Yang1, Di Huang1, Hong Weng1, Xian-Tao Zeng 
TL;DR: This review introduced methodological quality assessment tools for randomized controlled trial, animal study, non-randomized interventional studies, qualitative study, outcome measurement instruments, systematic review and meta-analysis, and clinical practice guideline.
Abstract: Methodological quality (risk of bias) assessment is an important step before study initiation usage. Therefore, accurately judging study type is the first priority, and the choosing proper tool is also important. In this review, we introduced methodological quality assessment tools for randomized controlled trial (including individual and cluster), animal study, non-randomized interventional studies (including follow-up study, controlled before-and-after study, before-after/ pre-post study, uncontrolled longitudinal study, interrupted time series study), cohort study, case-control study, cross-sectional study (including analytical and descriptive), observational case series and case reports, comparative effectiveness research, diagnostic study, health economic evaluation, prediction study (including predictor finding study, prediction model impact study, prognostic prediction model study), qualitative study, outcome measurement instruments (including patient - reported outcome measure development, content validity, structural validity, internal consistency, cross-cultural validity/ measurement invariance, reliability, measurement error, criterion validity, hypotheses testing for construct validity, and responsiveness), systematic review and meta-analysis, and clinical practice guideline. The readers of our review can distinguish the types of medical studies and choose appropriate tools. In one word, comprehensively mastering relevant knowledge and implementing more practices are basic requirements for correctly assessing the methodological quality.

625 citations

Journal ArticleDOI
TL;DR: The study indicated that the NKILA‐mediated negative feedback affects TGF‐β‐induced NF‐κB activation and that NKILA may be a therapeutic molecule in breast cancer metastasis via inhibition of EMT.
Abstract: TGF-β plays a central role in mediating epithelial-mesenchymal transition (EMT) by activating the Smad pathway. In addition, accumulating evidence suggests that TGF-β-induced EMT is NF-κB-dependent in various cancer types. However, it is largely unclear if NF-κB mediates TGF-β-induced EMT in breast cancer, and if this mediation occurs, the regulatory mechanisms are unknown. In our study, we found that TGF-β activates the NF-κB pathway. Inhibition of NF-κB signaling markedly abrogates TGF-β-induced EMT. By studying the regulatory mechanism of TGF-β-induced NF-κB signaling, we found that lncRNA NKILA was upregulated by TGF-β and was essential for the negative feedback regulation of the NF-κB pathway. Accordingly, overexpression of NKILA significantly reduced TGF-β-induced tumor metastasis in vivo. Consistent with the results from mice, the expression of NKILA was negatively correlated with EMT phenotypes in clinical breast cancer samples. Collectively, our study indicated that the NKILA-mediated negative feedback affects TGF-β-induced NF-κB activation and that NKILA may be a therapeutic molecule in breast cancer metastasis via inhibition of EMT.

96 citations

Journal ArticleDOI
TL;DR: A working group of clinical experts and methodologists searched the literature for direct evidence on the management of COVID-19, and assessed its certainty generated recommendations using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach.
Abstract: The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a rapidly spreading illness, coronavirus disease 2019 (COVID-19), affecting more than seventeen million people around the world. Diagnosis and treatment guidelines for clinicians caring for patients are needed. In the early stage, we have issued “A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version)”; now there are many direct evidences emerged and may change some of previous recommendations and it is ripe for develop an evidence-based guideline. We formed a working group of clinical experts and methodologists. The steering group members proposed 29 questions that are relevant to the management of COVID-19 covering the following areas: chemoprophylaxis, diagnosis, treatments, and discharge management. We searched the literature for direct evidence on the management of COVID-19, and assessed its certainty generated recommendations using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. Recommendations were either strong or weak, or in the form of ungraded consensus-based statement. Finally, we issued 34 statements. Among them, 6 were strong recommendations for, 14 were weak recommendations for, 3 were weak recommendations against and 11 were ungraded consensus-based statement. They covered topics of chemoprophylaxis (including agents and Traditional Chinese Medicine (TCM) agents), diagnosis (including clinical manifestations, reverse transcription-polymerase chain reaction (RT-PCR), respiratory tract specimens, IgM and IgG antibody tests, chest computed tomography, chest x-ray, and CT features of asymptomatic infections), treatments (including lopinavir-ritonavir, umifenovir, favipiravir, interferon, remdesivir, combination of antiviral drugs, hydroxychloroquine/chloroquine, interleukin-6 inhibitors, interleukin-1 inhibitors, glucocorticoid, qingfei paidu decoction, lianhua qingwen granules/capsules, convalescent plasma, lung transplantation, invasive or noninvasive ventilation, and extracorporeal membrane oxygenation (ECMO)), and discharge management (including discharge criteria and management plan in patients whose RT-PCR retesting shows SARS-CoV-2 positive after discharge). We also created two figures of these recommendations for the implementation purpose. We hope these recommendations can help support healthcare workers caring for COVID-19 patients.

87 citations

Journal ArticleDOI
TL;DR: Several candidate biomarkers correlated with the TNM staging and overall survival of BC patients are identified and might be used as potential diagnostic biomarkers and therapeutic targets with clinical utility.
Abstract: Objective: To identify candidate biomarkers correlated with clinical prognosis of patients with bladder cancer (BC). Methods: Weighted gene co-expression network analysis was applied to build a co-expression network to identify hub genes correlated with tumor node metastasis (TNM) staging of BC patients. Functional enrichment analysis was conducted to functionally annotate the hub genes. Protein-protein interaction network analysis of hub genes was performed to identify the interactions among the hub genes. Survival analyses were conducted to characterize the role of hub genes on the survival of BC patients. Gene set enrichment analyses were conducted to find the potential mechanisms involved in the tumor proliferation promoted by hub genes. Results: Based on the results of topological overlap measure based clustering and the inclusion criteria, top 50 hub genes were identified. Hub genes were enriched in cell proliferation associated gene ontology terms (mitotic sister chromatid segregation, mitotic cell cycle and cell cycle, etc) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (cell cycle, Oocyte meiosis, etc). 17 hub genes were found to interact with ≥ 5 of the hub genes. Survival analysis of hub genes suggested that lower expression of MMP11, COL5A2, CDC25B, TOP2A, CENPF, CDCA3, TK1, TPX2, CDCA8, AEBP1, and FOXM1were associated with better overall survival of BC patients. BC samples with higher expression of hub genes were enriched in gene sets associated with P53 pathway, apical junction, mitotic spindle, G2M checkpoint, and myogenesis,etc. Conclusions: We identified several candidate biomarkers correlated with the TNM staging and overall survival of BC patients. Accordingly, they might be used as potential diagnostic biomarkers and therapeutic targets with clinical utility.

76 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The symptoms, epidemiology, transmission, pathogenesis, phylogenetic analysis and future directions to control the spread of this fatal disease are highlighted.

4,065 citations

Journal ArticleDOI
TL;DR: The latest research progress of the epidemiology, pathogenesis, and clinical characteristics of COVID-19 are summarized, and the current treatment and scientific advancements to combat the epidemic novel coronavirus are discussed.
Abstract: An acute respiratory disease, caused by a novel coronavirus (SARS-CoV-2, previously known as 2019-nCoV), the coronavirus disease 2019 (COVID-19) has spread throughout China and received worldwide attention. On 30 January 2020, World Health Organization (WHO) officially declared the COVID-19 epidemic as a public health emergency of international concern. The emergence of SARS-CoV-2, since the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, marked the third introduction of a highly pathogenic and large-scale epidemic coronavirus into the human population in the twenty-first century. As of 1 March 2020, a total of 87,137 confirmed cases globally, 79,968 confirmed in China and 7169 outside of China, with 2977 deaths (3.4%) had been reported by WHO. Meanwhile, several independent research groups have identified that SARS-CoV-2 belongs to β-coronavirus, with highly identical genome to bat coronavirus, pointing to bat as the natural host. The novel coronavirus uses the same receptor, angiotensin-converting enzyme 2 (ACE2) as that for SARS-CoV, and mainly spreads through the respiratory tract. Importantly, increasingly evidence showed sustained human-to-human transmission, along with many exported cases across the globe. The clinical symptoms of COVID-19 patients include fever, cough, fatigue and a small population of patients appeared gastrointestinal infection symptoms. The elderly and people with underlying diseases are susceptible to infection and prone to serious outcomes, which may be associated with acute respiratory distress syndrome (ARDS) and cytokine storm. Currently, there are few specific antiviral strategies, but several potent candidates of antivirals and repurposed drugs are under urgent investigation. In this review, we summarized the latest research progress of the epidemiology, pathogenesis, and clinical characteristics of COVID-19, and discussed the current treatment and scientific advancements to combat the epidemic novel coronavirus.

3,277 citations

Journal ArticleDOI
TL;DR: The disease is mild in most people; in some (usually the elderly and those with comorbidities), it may progress to pneumonia, acute respiratory distress syndrome (ARDS) and multi organ dysfunction and many people are asymptomatic.
Abstract: There is a new public health crises threatening the world with the emergence and spread of 2019 novel coronavirus (2019-nCoV) or the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The virus originated in bats and was transmitted to humans through yet unknown intermediary animals in Wuhan, Hubei province, China in December 2019. There have been around 96,000 reported cases of coronavirus disease 2019 (COVID-2019) and 3300 reported deaths to date (05/03/2020). The disease is transmitted by inhalation or contact with infected droplets and the incubation period ranges from 2 to 14 d. The symptoms are usually fever, cough, sore throat, breathlessness, fatigue, malaise among others. The disease is mild in most people; in some (usually the elderly and those with comorbidities), it may progress to pneumonia, acute respiratory distress syndrome (ARDS) and multi organ dysfunction. Many people are asymptomatic. The case fatality rate is estimated to range from 2 to 3%. Diagnosis is by demonstration of the virus in respiratory secretions by special molecular tests. Common laboratory findings include normal/ low white cell counts with elevated C-reactive protein (CRP). The computerized tomographic chest scan is usually abnormal even in those with no symptoms or mild disease. Treatment is essentially supportive; role of antiviral agents is yet to be established. Prevention entails home isolation of suspected cases and those with mild illnesses and strict infection control measures at hospitals that include contact and droplet precautions. The virus spreads faster than its two ancestors the SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), but has lower fatality. The global impact of this new epidemic is yet uncertain.

2,594 citations

10 Mar 2020

2,024 citations