scispace - formally typeset
Search or ask a question
Author

Dianyuan Fan

Other affiliations: Fudan University
Bio: Dianyuan Fan is an academic researcher from Hunan University. The author has contributed to research in topics: Metamaterial & Laser. The author has an hindex of 27, co-authored 108 publications receiving 1986 citations. Previous affiliations of Dianyuan Fan include Fudan University.


Papers
More filters
Journal ArticleDOI
Hailu Luo1, Xinxing Zhou1, Weixing Shu1, Shuangchun Wen1, Dianyuan Fan1 
TL;DR: In this article, an enhanced and switchable spin Hall effect of light near the Brewster angle on reflection on reflection was demonstrated and the obtained spin-dependent splitting reached 3200 nm near the brewster angle, which is 50 times larger than the previously reported values in refraction.
Abstract: We theorize an enhanced and switchable spin Hall effect (SHE) of light near the Brewster angle on reflection and demonstrate it experimentally. The obtained spin-dependent splitting reaches 3200 nm near the Brewster angle, which is 50 times larger than the previously reported values in refraction. We find that the amplifying factor in weak measurement is not a constant, which is significantly different from that in refraction. As an analogy of SHE in an electronic system, a switchable spin accumulation in SHE of light is detected. We were able to switch the direction of the spin accumulations by slightly adjusting the incident angle.

212 citations

Journal ArticleDOI
TL;DR: It is shown that negative refraction not only brings some new features to MI, but also makes MI possible in ordinary material in which it is otherwise impossible.
Abstract: We investigate modulation instability (MI) in negative-index material (NIM) with a Kerr nonlinear polarization based on a derived (3+1)-dimensional nonlinear Schrodinger equation for ultrashort pulse propagation. By a standard linear stability analysis, we obtain the expression for instability gain, which unifies the temporal, spatial, and spatiotemporal MI. It is shown that negative refraction not only brings some new features to MI, but also makes MI possible in ordinary material in which it is otherwise impossible. For example, spatial MI can occur in the defocusing regime, while it only occurs in the focusing regime in ordinary material. Spatiotemporal MI can appear in NIM in the case of anomalous dispersion and defocusing nonlinearity, while it cannot appear in ordinary material in the same case. We believe that the difference between the MI in NIM and in ordinary material is due to the fact that negative refraction reverses the sign of the diffraction term, with the signs of dispersion and nonlinearity unchanged. The most notable property of MI in NIM is that it can be manipulated by engineering the self-steepening effect by choosing the size of split-ring resonator circuit elements. To sum up the MI in ordinary material and in NIM, MI may occur for all the combinations of dispersion and nonlinearity.

148 citations

Journal ArticleDOI
TL;DR: In this article, a planar Pancharatnam-berry (PB) phase element was proposed to replace all the elements required to obtain the perfect vortex beam for integrated optical communication and micromanipulation systems.
Abstract: Perfect vortex beams are the orbital angular momentum (OAM)-carrying beams with fixed annular intensities, which provide a better source of OAM than traditional Laguerre-Gaussian beams. However, ordinary schemes to obtain the perfect vortex beams are usually bulky and unstable. We demonstrate here a novel generation scheme by designing planar Pancharatnam-Berry (PB) phase elements to replace all the elements required. Different from the conventional approaches based on reflective or refractive elements, PB phase elements can dramatically reduce the occupying volume of system. Moreover, the PB phase element scheme is easily developed to produce the perfect vector beams. Therefore, our scheme may provide prominent vortex and vector sources for integrated optical communication and micromanipulation systems.

112 citations

Journal ArticleDOI
TL;DR: In this paper, a generalized system of coupled three-dimensional nonlinear Schroedinger equations (NLSEs) was derived for few-cycle pulse propagation in a metamaterial with both nonlinear electric polarization and nonlinear magnetization.
Abstract: A metamaterial (MM) differs from an ordinary optical material mainly in that it has a dispersive magnetic permeability and offers greatly enhanced design freedom to alter the linear and nonlinear properties. This makes it possible for us to control the propagation of ultrashort electromagnetic pulses at will. Here we report on generic features of ultrashort electromagnetic pulse propagation and demonstrate the controllability of both the linear and nonlinear parameters of models for pulse propagation in MMs. First, we derive a generalized system of coupled three-dimensional nonlinear Schroedinger equations (NLSEs) suitable for few-cycle pulse propagation in a MM with both nonlinear electric polarization and nonlinear magnetization. The coupled equations recover previous models for pulse propagation in both ordinary material and a MM under the same conditions. Second, by using the coupled NLSEs in the Drude dispersive model as an example, we identify the respective roles of the dispersive electric permittivity and magnetic permeability in ultrashort pulse propagation and disclose some additional features of pulse propagation in MMs. It is shown that, for linear propagation, the sign and magnitude of space-time focusing can be controlled through adjusting the linear dispersive permittivity and permeability. For nonlinear propagation, the linear dispersive permittivity and permeabilitymore » are incorporated into the nonlinear magnetization and nonlinear polarization, respectively, resulting in controllable magnetic and electric self-steepening effects and higher-order dispersively nonlinear terms in the propagation models.« less

105 citations

Journal ArticleDOI
Hailu Luo1, Xiaohui Ling1, Xinxing Zhou1, Weixing Shu1, Shuangchun Wen1, Dianyuan Fan1 
TL;DR: In this paper, the spin Hall effect of light in layered nanostructures is investigated theoretically and a general propagation model describing the spin-dependent transverse splitting of wave packets in the SHE of light is established from the viewpoint of classical electrodynamics.
Abstract: The spin Hall effect (SHE) of light in layered nanostructures is investigated theoretically in this paper. A general propagation model describing the spin-dependent transverse splitting of wave packets in the SHE of light is established from the viewpoint of classical electrodynamics. We show that the transverse displacement of the wave-packet centroid can be tuned to either a negative or a positive value, or even zero, by just adjusting the structure parameters, suggesting that the SHE of light in layered nanostructures can be enhanced or suppressed in a desired way. The inherent physics behind this interesting phenomenon is attributed to the optical Fabry-Perot resonance. We believe that these findings will open the possibility for developing new nanophotonic devices.

81 citations


Cited by
More filters
Journal ArticleDOI
04 Oct 2006
TL;DR: In this paper, a review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime.
Abstract: A topical review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime. Results from numerical simulations are used to discuss the temporal and spectral characteristics of the supercontinuum, and to interpret the physics of the underlying spectral broadening processes. Particular attention is given to the case of supercontinuum generation seeded by femtosecond pulses in the anomalous group velocity dispersion regime of photonic crystal fiber, where the processes of soliton fission, stimulated Raman scattering, and dispersive wave generation are reviewed in detail. The corresponding intensity and phase stability properties of the supercontinuum spectra generated under different conditions are also discussed.

3,361 citations

Journal ArticleDOI
15 Mar 2013-Science
TL;DR: Progress in the optics of metasurfaces is reviewed and promising applications for surface-confined planar photonics components are discussed and the studies of new, low-loss, tunable plasmonic materials—such as transparent conducting oxides and intermetallics—that can be used as building blocks for metAsurfaces will complement the exploration of smart designs and advanced switching capabilities.
Abstract: Metamaterials, or engineered materials with rationally designed, subwavelength-scale building blocks, allow us to control the behavior of physical fields in optical, microwave, radio, acoustic, heat transfer, and other applications with flexibility and performance that are unattainable with naturally available materials. In turn, metasurfaces-planar, ultrathin metamaterials-extend these capabilities even further. Optical metasurfaces offer the fascinating possibility of controlling light with surface-confined, flat components. In the planar photonics concept, it is the reduced dimensionality of the optical metasurfaces that enables new physics and, therefore, leads to functionalities and applications that are distinctly different from those achievable with bulk, multilayer metamaterials. Here, we review the progress in developing optical metasurfaces that has occurred over the past few years with an eye toward the promising future directions in the field.

2,562 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of the fundamental origins and important applications of the main spin-orbit interaction phenomena in modern optics that play a crucial role at subwavelength scales, including spin-Hall effects in inhomogeneous media and at optical interfaces, spindependent effects in non-paraxial (focused or scattered) fields, spin-controlled shaping of light using anisotropic structured interfaces (metasurfaces).
Abstract: This Review article provides an overview of the fundamental origins and important applications of the main spin–orbit interaction phenomena in modern optics that play a crucial role at subwavelength scales. Light carries both spin and orbital angular momentum. These dynamical properties are determined by the polarization and spatial degrees of freedom of light. Nano-optics, photonics and plasmonics tend to explore subwavelength scales and additional degrees of freedom of structured — that is, spatially inhomogeneous — optical fields. In such fields, spin and orbital properties become strongly coupled with each other. In this Review we cover the fundamental origins and important applications of the main spin–orbit interaction phenomena in optics. These include: spin-Hall effects in inhomogeneous media and at optical interfaces, spin-dependent effects in nonparaxial (focused or scattered) fields, spin-controlled shaping of light using anisotropic structured interfaces (metasurfaces) and robust spin-directional coupling via evanescent near fields. We show that spin–orbit interactions are inherent in all basic optical processes, and that they play a crucial role in modern optics.

1,642 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe recent progress in the fabrication of three-dimensional metamaterial structures and discuss some of the remaining challenges, including ultra-high-resolution imaging systems, compact polarization optics and cloaking devices.
Abstract: Photonic metamaterials are man-made structures composed of tailored micro- or nanostructured metallodielectric subwavelength building blocks. This deceptively simple yet powerful concept allows the realization of many new and unusual optical properties, such as magnetism at optical frequencies, negative refractive index, large positive refractive index, zero reflection through impedance matching, perfect absorption, giant circular dichroism and enhanced nonlinear optical properties. Possible applications of metamaterials include ultrahigh-resolution imaging systems, compact polarization optics and cloaking devices. This Review describes recent progress in the fabrication of three-dimensional metamaterial structures and discusses some of the remaining challenges.

1,594 citations

Journal ArticleDOI
TL;DR: This review concentrates on the use of electric fields within catalyst particles to mitigate the effects of recombination and back-reaction and to increase photochemical reactivity.
Abstract: The photocatalytic activity of materials for water splitting is limited by the recombination of photogenerated electron–hole pairs as well as the back-reaction of intermediate species. This review concentrates on the use of electric fields within catalyst particles to mitigate the effects of recombination and back-reaction and to increase photochemical reactivity. Internal electric fields in photocatalysts can arise from ferroelectric phenomena, p–n junctions, polar surface terminations, and polymorph junctions. The manipulation of internal fields through the creation of charged interfaces in hierarchically structured materials is a promising strategy for the design of improved photocatalysts.

636 citations