scispace - formally typeset
Search or ask a question
Author

Dick Pluim

Other affiliations: VU University Amsterdam
Bio: Dick Pluim is an academic researcher from Netherlands Cancer Institute. The author has contributed to research in topics: Carboplatin & Cisplatin. The author has an hindex of 27, co-authored 68 publications receiving 4121 citations. Previous affiliations of Dick Pluim include VU University Amsterdam.


Papers
More filters
Journal ArticleDOI
TL;DR: The maximum-tolerated dose (MTD), profile of adverse events, and dose-limiting toxicity of NAMI-A in patients with solid tumors were determined and the ruthenium pharmacokinetic analysis revealed a linear relationship between dose and area under the concentration-time curve (AUC) of total and unbound rUThenium.
Abstract: Purpose: NAMI-A {H 2 Im[ trans- RuCl 4 (DMSO)HIm] or imidazolium- trans- DMSO-imidazole-tetrachlororuthenate} is a novel ruthenium-containing compound that has demonstrated antimetastatic activity in preclinical studies. This Phase I study was designed to determine the maximum-tolerated dose (MTD), profile of adverse events, and dose-limiting toxicity of NAMI-A in patients with solid tumors. Furthermore, the ruthenium pharmacokinetics (PK) after NAMI-A administration and preliminary antitumor activity were evaluated. Patients and Methods: Adult patients with solid tumors received NAMI-A as an i.v. infusion over 3 h daily for 5 days every 3 weeks. PK of total and unbound ruthenium was determined during the first and second treatment using noncompartmental pharmacokinetic analysis. The total accumulation of ruthenium in WBCs was also quantified. Results: Twenty-four patients were treated at 12 dose levels (2.4–500 mg/m 2 /day). At 400 mg/m 2 /day, blisters developed on the hands, fingers, and toes. At 500 mg/m 2 /day, blisters persisted from weeks to months and slowly regressed. Although no formal common toxicity criteria (CTC) grade 3 developed, painful blister formation was considered dose limiting. Because the first signs developed at 400 mg/m 2 /day, the advised dose for further testing of NAMI-A was determined to be 300 mg/m 2 /day on this schedule. PK analysis revealed a linear relationship between dose and area under the concentration-time curve (AUC) of total and unbound ruthenium ( R 2 = 0.75 and 0.96, respectively) over the whole dose range. Plasma clearance of total ruthenium was 0.17 ± 0.09 liter/h, and terminal half-life was 50 ± 19 h. The volume of distribution at steady state of total ruthenium was 10.1 ± 2.8 liters. The accumulation of ruthenium in WBC was not directly proportional to the increasing total exposure to ruthenium. One patient with pretreated and progressive nonsmall cell lung cancer had stable disease for 21 weeks. Conclusion: NAMI-A can be administered safely as a 3-h i.v. infusion at a dose of 300 mg/m 2 /day for 5 days, every 3 weeks.

751 citations

Journal Article
TL;DR: It is reported for the first time that BCRP/MXR/ABCP can also be up-regulated upon exposure of tumor cells to the clinically important drug topotecan, and that B CRP-mediated efflux of topOTecan is very efficient.
Abstract: Topotecan- or mitoxantrone-selected cell lines (T8 and MX3, respectively), derived from the human IGROV1 ovarian cancer cell line, were resistant to the topoisomerase I inhibitors topotecan, SN-38 (the active metabolite of irinotecan), and 9-aminocamptothecin, as well as to the topoisomerase II drug mitoxantrone. In both resistant cell lines, decreased accumulation of topotecan and mitoxantrone was observed, caused by enhanced energy-dependent efflux of the drugs involved. In both cell lines, we found that the breast cancer resistance protein/mitoxantrone resistance/placenta-specific ATP binding cassette (BCRP/MXR/ABCP) gene was overexpressed. Furthermore, BCRP/MXR/ABCP expression levels in various partially revertant T8 cells correlated with the levels of resistance to topotecan, SN-38, and mitoxantrone, strongly suggesting BCRP/MXR/ABCP to be the transporter responsible for the enhanced efflux. Pharmacodynamic analysis demonstrated that BCRP/MXR/ABCP is a very efficient transporter of topotecan; in vitro, 70% of the intracellular topotecan pool was transported out of the T8 or MX3 cells within 30 s. In conclusion, we report for the first time that BCRP/MXR/ABCP can also be up-regulated upon exposure of tumor cells to the clinically important drug topotecan, and that BCRP-mediated efflux of topotecan is very efficient. This highly efficient efflux of topotecan by BCRP/MXR/ABCP may have clinical relevance for patients being treated with topotecan.

464 citations

Journal ArticleDOI
TL;DR: It is shown that imatinib is efficiently transported by mouse Bcrp1 in transfected Madin-Darby canine kidney strain II (MDCKII) monolayers and the hypothesis that P-gp and BCRP inhibitors, such as elacridar and pantoprazole, improve the brain penetration of imatinIB is tested.
Abstract: Imatinib mesylate (signal transduction inhibitor 571, Gleevec) is a potent and selective tyrosine kinase inhibitor, which was shown to effectively inhibit platelet-derived growth factor-induced glioblastoma cell growth preclinically. However, in patients, a limited penetration of imatinib into the brain has been reported. Imatinib is transported in vitro and in vivo by P-glycoprotein (P-gp; ABCB1), which thereby limits its distribution into the brain in mice. Previously, imatinib was shown to potently inhibit human breast cancer resistance protein (BCRP; ABCG2). Here, we show that imatinib is efficiently transported by mouse Bcrp1 in transfected Madin-Darby canine kidney strain II (MDCKII) monolayers. Furthermore, we show that the clearance of i.v. imatinib is significantly decreased 1.6-fold in Bcrp1 knockout mice compared with wild-type mice. At t = 2 hours, the brain penetration of i.v. imatinib was significantly 2.5-fold increased in Bcrp1 knockout mice compared with control mice. We tested the hypothesis that P-gp and BCRP inhibitors, such as elacridar and pantoprazole, improve the brain penetration of imatinib. Firstly, we showed in vitro that pantoprazole and elacridar inhibit the Bcrp1-mediated transport of imatinib in MDCKII-Bcrp1 cells. Secondly, we showed that co-administration of pantoprazole or elacridar significantly reduced the clearance of i.v. imatinib in wild-type mice by respectively 1.7-fold and 1.5-fold. Finally, in wild-type mice treated with pantoprazole or elacridar, the brain penetration of i.v. imatinib significantly increased 1.8-fold and 4.2-fold, respectively. Moreover, the brain penetration of p.o. imatinib increased 5.2-fold when pantoprazole was co-administered in wild-type mice. Our results suggest that co-administration of BCRP and P-gp inhibitors may improve delivery of imatinib to malignant gliomas.

376 citations

Journal ArticleDOI
TL;DR: Main adverse events consisted of neutropenia, anemia, elevated liver enzymes, transient creatinine elevation, nausea, vomiting, constipation, diarrhea, fatigue, and renal toxicity.
Abstract: Background This phase I/II study determined the maximal tolerable dose, dose limiting toxicities, antitumor activity, the pharmacokinetics and pharmacodynamics of ruthenium compound NAMI-A in combination with gemcitabine in Non-Small Cell Lung Cancer patients after first line treatment Methods Initial dose escalation of NAMI-A was performed in a 28 day cycle: NAMI-A as a 3 h infusion through a port-a-cath at a starting dose of 300 mg/m2 at day 1, 8 and 15, in combination with gemcitabine 1,000 mg/m2 at days 2, 9 and 16 Subsequently, dose escalation of NAMI-A in a 21 day schedule was explored At the maximal tolerable dose level of this schedule an expansion group was enrolled of which 15 patients were evaluable for response Results Due to frequent neutropenic dose interruptions in the third week, the 28 day schedule was amended into a 21 day schedule The maximal tolerable dose was 300 and 450 mg/m2 of NAMI-A (21 day schedule) Main adverse events consisted of neutropenia, anemia, elevated liver enzymes, transient creatinine elevation, nausea, vomiting, constipation, diarrhea, fatigue, and renal toxicity Conclusion NAMI-A administered in combination with gemcitabine is only moderately tolerated and less active in NSCLC patients after first line treatment than gemcitabine alone

313 citations

Journal Article
TL;DR: It is concluded that the affinities of topoisomerase I drugs for BCRP are, in decreasing order: SN-38 > topotecan > 9-aminocamptothecin > CPT-11 > NX211 > DX8951f > BNP1350 • GF120918.
Abstract: This study was aimed at characterizing the role of BCRP/MXR/ABCP (BCRP) in resistance of the human ovarian tumor cell lines T8 and MX3 to camptothecins more extensively and investigating whether resistance can be reversed by inhibiting BCRP by GF120918. Camptothecins studied were topotecan, CPT-11, and its active metabolite SN-38, 9-aminocamptothecin, and the novel experimental camptothecins NX211, DX8951f, and BNP1350. Notably, DX8951f and BNP1350 appeared to be very poor substrates for BCRP, with much lower resistance factors observed both in T8 and MX3 cells than observed for the other camptothecins tested. In the presence of a nontoxic dose level of GF120918, the intracellular accumulation of topotecan in the T8 and MX3 cells was completely restored to the intracellular levels observed in the sensitive IGROV1 parental cell line. This resulted in almost complete reversal of drug resistance to topotecan and to most of the other topoisomerase I drugs tested in the T8 cell line and to complete reversal in the MX3 cells. However, coincubation of DX8951f or BNP1350 with GF120918 did not affect the cytotoxicity of either of these drugs significantly. From the combined data, we conclude that the affinities of topoisomerase I drugs for BCRP are, in decreasing order: SN-38 > topotecan > 9-aminocamptothecin approximately CPT-11 > NX211 > DX8951f > BNP1350. Furthermore, GF120918 appears to be a potent reversal agent of BCRP-mediated resistance to camptothecins, with almost complete reversal noted at 100 nM. Potential BCRP-mediated resistance to topoisomerase I inhibitors can also be avoided by using the BCRP-insensitive drugs DX8951f or BNP1350. This observation may have important clinical implications for future development of novel camptothecins.

250 citations


Cited by
More filters
Journal ArticleDOI
19 Mar 2004-Science
TL;DR: There is considerable interest in exploiting the advantages of DDS for in vivo delivery of new drugs derived from proteomics or genomics research and for their use in ligand-targeted therapeutics.
Abstract: Drug delivery systems (DDS) such as lipid- or polymer-based nanoparticles can be designed to improve the pharmacological and therapeutic properties of drugs administered parenterally. Many of the early problems that hindered the clinical applications of particulate DDS have been overcome, with several DDS formulations of anticancer and antifungal drugs now approved for clinical use. Furthermore, there is considerable interest in exploiting the advantages of DDS for in vivo delivery of new drugs derived from proteomics or genomics research and for their use in ligand-targeted therapeutics.

4,162 citations

Journal ArticleDOI
TL;DR: Key developments include the elucidation of mechanisms of tumour resistance to these drugs, the introduction of new platinum-based agents (oxaliplatin, satraplatin and picoplatin), and clinical combination studies using platinum drugs with resistance modulators or new molecularly targeted drugs.
Abstract: The accidental discovery of the anticancer properties of cisplatin and its clinical introduction in the 1970s represent a major landmark in the history of successful anticancer drugs. Although carboplatin--a second-generation analogue that is safer but shows a similar spectrum of activity to cisplatin--was introduced in the 1980s, the pace of further improvements slowed for many years. However, in the past several years interest in platinum drugs has increased. Key developments include the elucidation of mechanisms of tumour resistance to these drugs, the introduction of new platinum-based agents (oxaliplatin, satraplatin and picoplatin), and clinical combination studies using platinum drugs with resistance modulators or new molecularly targeted drugs.

4,014 citations

Journal ArticleDOI
TL;DR: This review summarizes historical and scientific perspectives of Doxil development and lessons learned from its development and 20 years of its use and demonstrates the obligatory need for applying an understanding of the cross talk between physicochemical, nano-technological, and biological principles.

3,189 citations

Journal ArticleDOI
TL;DR: Results show that expression of the Bcrp1/ABCG2 gene is an important determinant of the SP phenotype, and that it might serve as a marker for stem cells from various sources.
Abstract: Stem cells from bone marrow, skeletal muscle and possibly other tissues can be identified by the 'side-population' (SP) phenotype. Although it has been assumed that expression of ABC transporters is responsible for this phenotype, the specific molecules involved have not been defined. Here we show that expression of the Bcrp1 (also known as Abcg2 murine/ABCG2 human) gene is a conserved feature of stem cells from a wide variety of sources. Bcrp1 mRNA was expressed at high levels in primitive murine hematopoietic stem cells, and was sharply downregulated with differentiation. Enforced expression of the ABCG2 cDNA directly conferred the SP phenotype to bone-marrow cells and caused a reduction in maturing progeny both in vitro and in transplantation-based assays. These results show that expression of the Bcrp1/ABCG2 gene is an important determinant of the SP phenotype, and that it might serve as a marker for stem cells from various sources.

2,309 citations