scispace - formally typeset
Search or ask a question
Author

Didier Boichard

Other affiliations: Agro ParisTech
Bio: Didier Boichard is an academic researcher from Institut national de la recherche agronomique. The author has contributed to research in topics: Population & Biology. The author has an hindex of 36, co-authored 121 publications receiving 5277 citations. Previous affiliations of Didier Boichard include Agro ParisTech.


Papers
More filters
Journal ArticleDOI
TL;DR: The 1000 bull genomes project supports the goal of accelerating the rates of genetic gain in domestic cattle while at the same time considering animal health and welfare by providing the annotated sequence variants and genotypes of key ancestor bulls.
Abstract: The 1000 bull genomes project supports the goal of accelerating the rates of genetic gain in domestic cattle while at the same time considering animal health and welfare by providing the annotated sequence variants and genotypes of key ancestor bulls. In the first phase of the 1000 bull genomes project, we sequenced the whole genomes of 234 cattle to an average of 8.3-fold coverage. This sequencing includes data for 129 individuals from the global Holstein-Friesian population, 43 individuals from the Fleckvieh breed and 15 individuals from the Jersey breed. We identified a total of 28.3 million variants, with an average of 1.44 heterozygous sites per kilobase for each individual. We demonstrate the use of this database in identifying a recessive mutation underlying embryonic death and a dominant mutation underlying lethal chrondrodysplasia. We also performed genome-wide association studies for milk production and curly coat, using imputed sequence variants, and identified variants associated with these traits in cattle.

690 citations

Journal ArticleDOI
TL;DR: Genetic parameters were estimated by restricted maximum likelihood with an animal model on first lactation data of 29,284 French Holstein cows for clinical mastitis, lactation somatic cell score, milking ease, production, and nine udder type traits to indicate that both traits were genetically favorably associated.

350 citations

Journal ArticleDOI
TL;DR: Improvement of selection accuracy for mastitis resistance is ongoing and includes: advances in modelling, optimal combination of mastitis related traits and associated predictors, such as udder morphology, definition of global breeding objective including production and functional traits, and inclusion of molecular information that is now available from QTL experiments.
Abstract: Genetic variability of mastitis resistance is well established in dairy cattle. Many studies focused on polygenic variation of the trait, by estimating heritabilities and genetic correlation among phenotypic traits related to mastitis such as somatic cell counts and clinical cases. The role of Major Histocompatibility Complex in the susceptibility or resistance to intrammamary infection is also well documented. Finally, development from molecular genome mapping led to accumulating information of quantitative trait loci (QTL) related to mastitis resistance and better understanding of the genetic determinism of the trait. From economic and genetic analyses, and according to welfare and food safety considerations and to breeders and consumer's concern, there is more and more evidence that mastitis should be included in breeding objective of dairy cattle breeds. Many countries have implemented selection for mastitis resistance based on linear decrease of somatic cell counts. Given biological questioning, potential unfavourable consequences for very low cell counts cows are regularly investigated. Improvement of selection accuracy for mastitis resistance is ongoing and includes: advances in modelling, optimal combination of mastitis related traits and associated predictors, such as udder morphology, definition of global breeding objective including production and functional traits, and inclusion of molecular information that is now available from QTL experiments.

299 citations

Journal ArticleDOI
TL;DR: This project of QTL detection was carried out in the French Holstein, Normande, and Montbéliarde dairy cattle breeds and confirmed several already published QTL but most of them were original, particularly for non-production traits.
Abstract: A project of QTL detection was carried out in the French Holstein, Normande, and Montbeliarde dairy cattle breeds. This granddaughter design included 1 548 artificial insemination bulls distributed in 14 sire families and evaluated after a progeny-test for 24 traits (production, milk composition, persistency, type, fertility, mastitis resistance, and milking ease). These bulls were also genotyped for 169 genetic markers, mostly microsatellites. The QTL were analysed by within-sire linear regression of daughter yield deviations or deregressed proofs on the probability that the son receives one or the other paternal QTL allele, given the marker information. QTL were detected for all traits, including those with a low heritability. One hundred and twenty QTL with a chromosome-wise significance lower than 3% were tabulated. This threshold corresponded to a 15% false discovery rate. Amongst them, 32 were genome-wise significant. Estimates of their contribution to genetic variance ranged from 6 to 40%. Most substitution effects ranged from 0.6 to 1.0 genetic standard deviation. For a given QTL, only 1 to 5 families out of 14 were informative. The confidence intervals of the QTL locations were large and always greater than 20 cM. This experiment confirmed several already published QTL but most of them were original, particularly for non-production traits.

269 citations

Journal ArticleDOI
01 Aug 1998-Genetics
TL;DR: Quantitative trait loci affecting milk production and health of dairy cattle were mapped in a very large Holstein granddaughter design, and some chromosomes showed some evidence for 2 linked QTL affecting the same trait.
Abstract: Quantitative trait loci (QTL) affecting milk production and health of dairy cattle were mapped in a very large Holstein granddaughter design. The analysis included 1794 sons of 14 sires and 206 genetic markers distributed across all 29 autosomes and flanking an estimated 2497 autosomal cM using Kosambi's mapping function. All families were analyzed jointly with least-squares (LS) and variance components (VC) methods. A total of 6 QTL exceeding approximate experiment-wise significance thresholds, 24 QTL exceeding suggestive thresholds, and 34 QTL exceeding chromosome-wise thresholds were identified. Significance thresholds were determined via data permutation (for LS analysis) and chi-square distribution (for VC analysis). The average bootstrap confidence interval for the experiment-wise significant QTL was 48 cM. Some chromosomes harbored QTL affecting several traits, and these were always in coupling phase, defined by consistency with genetic correlations among traits. Chromosome 17 likely harbors 2 QTL affecting milk yield, and some other chromosomes showed some evidence for 2 linked QTL affecting the same trait. In each of these cases, the 2 QTL were in repulsion phase in those families appearing to be heterozygous for both QTL, a finding which supports the build-up of linkage disequilibrium due to selection.

230 citations


Cited by
More filters
Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
TL;DR: The Ensembl Variant Effect Predictor can simplify and accelerate variant interpretation in a wide range of study designs.
Abstract: The Ensembl Variant Effect Predictor is a powerful toolset for the analysis, annotation, and prioritization of genomic variants in coding and non-coding regions. It provides access to an extensive collection of genomic annotation, with a variety of interfaces to suit different requirements, and simple options for configuring and extending analysis. It is open source, free to use, and supports full reproducibility of results. The Ensembl Variant Effect Predictor can simplify and accelerate variant interpretation in a wide range of study designs.

4,658 citations

Journal ArticleDOI
TL;DR: Efficient methods for processing genomic data were developed to increase reliability of estimated breeding values and to estimate thousands of marker effects simultaneously, and a blend of first- and second-order Jacobi iteration using 2 separate relaxation factors converged well for allele frequencies and effects.

4,196 citations

01 Jan 2011
TL;DR: The sheer volume and scope of data posed by this flood of data pose a significant challenge to the development of efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data.
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

2,187 citations