scispace - formally typeset
Search or ask a question
Author

Diedrik Vermeulen

Other affiliations: Ghent University, Huawei
Bio: Diedrik Vermeulen is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Silicon photonics & Photonics. The author has an hindex of 27, co-authored 113 publications receiving 3051 citations. Previous affiliations of Diedrik Vermeulen include Ghent University & Huawei.


Papers
More filters
Journal ArticleDOI
TL;DR: This first demonstration of coherent solid-state light detection and ranging (LIDAR) using optical phased arrays in a silicon photonics platform is presented and paves the way for disruptive low-cost and compact LIDAR on-chip technology.
Abstract: We present, to the best of our knowledge, the first demonstration of coherent solid-state light detection and ranging (LIDAR) using optical phased arrays in a silicon photonics platform. An integrated transmitting and receiving frequency-modulated continuous-wave circuit was initially developed and tested to confirm on-chip ranging. Simultaneous distance and velocity measurements were performed using triangular frequency modulation. Transmitting and receiving optical phased arrays were added to the system for on-chip beam collimation, and solid-state beam steering and ranging measurements using this system are shown. A cascaded optical phase shifter architecture with multiple groups was used to simplify system control and allow for a compact packaged device. This system was fabricated within a 300 mm wafer CMOS-compatible platform and paves the way for disruptive low-cost and compact LIDAR on-chip technology.

492 citations

Journal ArticleDOI
TL;DR: A new generation of Silicon-on-Insulator fiber-to-chip grating couplers which use a silicon overlay to enhance the directionality and thereby the coupling efficiency is presented.
Abstract: A new generation of Silicon-on-Insulator fiber-to-chip grating couplers which use a silicon overlay to enhance the directionality and thereby the coupling efficiency is presented. Devices are realized on a 200mm wafer in a CMOS pilot line. The fabricated fiber couplers show a coupling efficiency of −1.6dB and a 3dB bandwidth of 80nm.

419 citations

Journal ArticleDOI
TL;DR: In this paper, high-performance integrated optical phased arrays along with first-of-their-kind light detection and ranging (LiDAR) and free-space data communication demonstrators are presented.
Abstract: We present high-performance integrated optical phased arrays along with first-of-their-kind light detection and ranging (LiDAR) and free-space data communication demonstrators. First, record-performance optical phased array components are shown with low-power phase shifters and high-directionality waveguide grating antennas. Then, one-dimensional (1-D) 512-element optical phased arrays are demonstrated with record low-power operation ( $ 1 mW total), large steering ranges, and high-speed two-dimensional (2-D) beam steering ( $ 30 $\mu$ s phase shifter time constant). Next, by utilizing optical phased arrays, we show coherent 2-D solid-state LiDAR on diffusive targets with simultaneous velocity extraction at a range of nearly 200 m. In addition, the first demonstration of 3-D coherent LiDAR with optical phased arrays is presented with raster-scanning arrays. Finally, lens-free chip-to-chip free-space optical communication links up to 50 m are shown, including a demonstration of a steerable transmitter to multiple optical phased array receivers at a 1 Gb/s data rate. This paper shows the most advanced silicon photonics solid-state beam steering to date with relevant demonstrators in practical applications.

326 citations

Journal ArticleDOI
TL;DR: Using the same silicon nitride platform and phased array architecture, it is demonstrated that the first large-aperture visible nanophotonic phased array at 635 nm with an aperture size of 0.064°×0.074° is demonstrated, to the best of the authors' knowledge.
Abstract: We demonstrate passive large-scale nanophotonic phased arrays in a CMOS-compatible silicon photonic platform. Silicon nitride waveguides are used to allow for higher input power and lower phase variation compared to a silicon-based distribution network. A phased array at an infrared wavelength of 1550 nm is demonstrated with an ultra-large aperture size of 4 mm×4 mm, achieving a record small and near diffraction-limited spot size of 0.021°×0.021° with a side lobe suppression of 10 dB. A main beam power of 400 mW is observed. Using the same silicon nitride platform and phased array architecture, we also demonstrate, to the best of our knowledge, the first large-aperture visible nanophotonic phased array at 635 nm with an aperture size of 0.5 mm×0.5 mm and a spot size of 0.064°×0.074°.

244 citations

Journal ArticleDOI
TL;DR: In this paper, high efficiency diffractive grating structures to interface a single mode optical fiber and a nanophotonic integrated circuit fabricated on silicon-on-insulator are presented.
Abstract: High efficiency diffractive grating structures to interface a single mode optical fiber and a nanophotonic integrated circuit fabricated on silicon-on-insulator are presented The diffractive grating structures are designed to be inherently very directional by adding a silicon overlay before grating definition 55% coupling efficiency at a wavelength of 153μm is experimentally demonstrated on devices fabricated using standard complementary metal-oxide semiconductor technology By optimizing the grating parameters, we theoretically show that 80% grating coupling efficiency can be obtained for a uniform grating structure

183 citations


Cited by
More filters
Journal Article
TL;DR: In this article, the diffraction tomography theorem is adapted to one-dimensional length measurement and the resulting spectral interferometry technique is described and the first length measurements using this technique on a model eye and on a human eye in vivo are presented.
Abstract: The diffraction tomography theorem is adapted to one-dimensional length measurement. The resulting spectral interferometry technique is described and the first length measurements using this technique on a model eye and on a human eye in vivo are presented.

1,237 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide an overview and outlook for the silicon waveguide platform, optical sources, optical modulators, photodetectors, integration approaches, packaging, applications of silicon photonics and approaches required to satisfy applications at mid-infrared wavelengths.
Abstract: Silicon photonics research can be dated back to the 1980s. However, the previous decade has witnessed an explosive growth in the field. Silicon photonics is a disruptive technology that is poised to revolutionize a number of application areas, for example, data centers, high-performance computing and sensing. The key driving force behind silicon photonics is the ability to use CMOS-like fabrication resulting in high-volume production at low cost. This is a key enabling factor for bringing photonics to a range of technology areas where the costs of implementation using traditional photonic elements such as those used for the telecommunications industry would be prohibitive. Silicon does however have a number of shortcomings as a photonic material. In its basic form it is not an ideal material in which to produce light sources, optical modulators or photodetectors for example. A wealth of research effort from both academia and industry in recent years has fueled the demonstration of multiple solutions to these and other problems, and as time progresses new approaches are increasingly being conceived. It is clear that silicon photonics has a bright future. However, with a growing number of approaches available, what will the silicon photonic integrated circuit of the future look like? This roadmap on silicon photonics delves into the different technology and application areas of the field giving an insight into the state-of-the-art as well as current and future challenges faced by researchers worldwide. Contributions authored by experts from both industry and academia provide an overview and outlook for the silicon waveguide platform, optical sources, optical modulators, photodetectors, integration approaches, packaging, applications of silicon photonics and approaches required to satisfy applications at mid-infrared wavelengths. Advances in science and technology required to meet challenges faced by the field in each of these areas are also addressed together with predictions of where the field is destined to reach.

939 citations

Book ChapterDOI
27 Jan 2010

878 citations

Journal ArticleDOI
TL;DR: In this article, the authors review recent progress and opportunities offered by temporal modulation to break reciprocity, revealing its potential for compact, low-energy, integrated non-reciprocal devices and discuss the future of this exciting research field.
Abstract: Reciprocity is a fundamental principle in optics, requiring that the response of a transmission channel is symmetric when source and observation points are interchanged. It is of major significance because it poses fundamental constraints on the way we process optical signals. Non-reciprocal devices, which break this symmetry, have become fundamental in photonic systems. Today they require magnetic materials that are bulky, costly and cannot be integrated. This is in stark contrast with most photonic devices, including sources, modulators, switches, waveguides, interconnects and antennas, which may be realized at the nanoscale. Here, we review recent progress and opportunities offered by temporal modulation to break reciprocity, revealing its potential for compact, low-energy, integrated non-reciprocal devices, and discuss the future of this exciting research field. The progress on non-reciprocal photonic devices enabled by temporal modulation is reviewed.

673 citations

Journal ArticleDOI
TL;DR: This work proposes the first integrated passive silicon photonics reservoir and demonstrates that this generic chip can be used to perform arbitrary Boolean logic operations with memory as well as 5-bit header recognition up to 12.5 Gbit s(-1), without power consumption in the reservoir.
Abstract: Reservoir computing uses computational techniques related to neural networks to perform certain computing tasks. Here, the authors implement a passive optical reservoir computing scheme integrated on a silicon chip, operating at speeds up to 12.5 Gbit s−1.

655 citations