scispace - formally typeset
Search or ask a question
Author

Diego P. Vázquez

Bio: Diego P. Vázquez is an academic researcher from National University of Cuyo. The author has contributed to research in topics: Pollination & Ecological network. The author has an hindex of 39, co-authored 106 publications receiving 8997 citations. Previous affiliations of Diego P. Vázquez include University of Buenos Aires & University of Tennessee.


Papers
More filters
Journal ArticleDOI
TL;DR: A conceptual model for exploring how one mobile-agent-based ecosystem service (MABES), pollination, is affected by land-use change, and then generalize the model to other MABES is developed.
Abstract: Many ecosystem services are delivered by organisms that depend on habitats that are segregated spatially or temporally from the location where services are provided. Management of mobile organisms contributing to ecosystem services requires consideration not only of the local scale where services are delivered, but also the distribution of resources at the landscape scale, and the foraging ranges and dispersal movements of the mobile agents. We develop a conceptual model for exploring how one such mobile-agent-based ecosystem service (MABES), pollination, is affected by land-use change, and then generalize the model to other MABES. The model includes interactions and feedbacks among policies affecting land use, market forces and the biology of the organisms involved. Animal-mediated pollination contributes to the production of goods of value to humans such as crops; it also bolsters reproduction of wild plants on which other services or service-providing organisms depend. About onethird of crop production depends on animal pollinators, while 60–90% of plant species require an animal pollinator. The sensitivity of mobile organisms to ecological factors that operate across spatial scales makes the services provided by a given community of mobile agents highly contextual. Services vary, depending on the spatial and temporal distribution of resources surrounding the site, and on biotic interactions occurring locally, such as competition among pollinators for resources, and among plants for pollinators. The value of the resulting goods or services may feed back via market-based forces to influence land-use policies, which in turn influence land management practices that alter local habitat conditions and landscape structure. Developing conceptual

1,277 citations

Journal ArticleDOI
01 Aug 2009-Ecology
TL;DR: Both bee abundance and species richness were significantly, negatively affected by disturbance, however, the magnitude of the effects was not large and the only disturbance type showing a significant negative effect, habitat loss and fragmentation, was statistically significant only in systems where very little natural habitat remains.
Abstract: Pollinators may be declining globally, a matter of concern because animal pollination is required by most of the world's plant species, including many crop plants. Human land use and the loss of native habitats is thought to be an important driver of decline for wild, native pollinators, yet the findings of published studies on this topic have never been quantitatively synthesized. Here we use meta-analysis to synthesize the literature on how bees, the most important group of pollinators, are affected by human disturbances such as habitat loss, grazing, logging, and agriculture. We obtained 130 effect sizes from 54 published studies recording bee abundance and/or species richness as a function of human disturbance. Both bee abundance and species richness were significantly, negatively affected by disturbance. However, the magnitude of the effects was not large. Furthermore, the only disturbance type showing a significant negative effect, habitat loss and fragmentation, was statistically significant only in systems where very little natural habitat remains. Therefore, it would be premature to draw conclusions about habitat loss having caused global pollinator decline without first assessing the extent to which the existing studies represent the status of global ecosystems. Future pollinator declines seem likely given forecasts of increasing land-use change.

847 citations

Journal ArticleDOI
TL;DR: It is concluded that species introductions generally alter plants' interactions with enemies, mutualists and competitors, and that there is increasing evidence that these altered interactions jointly influence the success of introduced populations.
Abstract: Introduced plant populations lose interactions with enemies, mutualists and competitors from their native ranges, and gain interactions with new species, under new abiotic conditions. From a biogeographical perspective, differences in the assemblage of interacting species, as well as in abiotic conditions, may explain the demographic success of the introduced plant populations relative to conspecifics in their native range. Within invaded communities, the new interactions and conditions experienced by the invader may influence both its demographic success and its effects on native biodiversity. Here, we examine indirect effects involving enemies, mutualists and competitors of introduced plants, and effects of abiotic conditions on biotic interactions. We then synthesize ideas building on Darwin’s idea that the kinds of new interactions gained by an introduced population will depend on its relatedness to native populations. This yields a heuristic framework to explain how biotic interactions and abiotic conditions influence invader success. We conclude that species introductions generally alter plants interactions with enemies, mutualists and competitors, and that there is increasing evidence that these altered interactions jointly influence the success of introduced populations. Ecology Letters (2006) 9: 726‐740

761 citations

Journal ArticleDOI
01 Jul 2007-Oikos
TL;DR: It is shown that across all types of networks asymmetry was correlated with abundance, so that rare species were asymmetrically affected by their abundant partners, while pairs of interacting abundant species tended to exhibit more symmetric, reciprocally strong effects.
Abstract: The strength of interactions among species in a network tends to be highly asymmetric. We evaluate the hypothesis that this asymmetry results from the distribution of abundance among species, so that species interactions occur randomly among individuals. We used a database on mutualistic and antagonistic bipartite quantitative interaction networks. We show that across all types of networks asymmetry was correlated with abundance, so that rare species were asymmetrically affected by their abundant partners, while pairs of interacting abundant species tended to exhibit more symmetric, reciprocally strong effects. A null model shows that abundance provides a sufficient explanation of the asymmetry structure in some networks, but suggests the role of additional factors in others. Although not universal, our hypothesis holds for a substantial fraction of networks analyzed here, and should be considered as a null model in all studies aimed at evaluating the ecological and evolutionary consequences of species interactions.

526 citations

Journal ArticleDOI
TL;DR: This review shows that researchers of plant-animal mutualisms have made substantial progress in the understanding of the processes behind the patterns observed in mutualistic networks, but are still far from a thorough, integrative mechanistic understanding.

513 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
TL;DR: The nature and extent of reported declines, and the potential drivers of pollinator loss are described, including habitat loss and fragmentation, agrochemicals, pathogens, alien species, climate change and the interactions between them are reviewed.
Abstract: Pollinators are a key component of global biodiversity, providing vital ecosystem services to crops and wild plants. There is clear evidence of recent declines in both wild and domesticated pollinators, and parallel declines in the plants that rely upon them. Here we describe the nature and extent of reported declines, and review the potential drivers of pollinator loss, including habitat loss and fragmentation, agrochemicals, pathogens, alien species, climate change and the interactions between them. Pollinator declines can result in loss of pollination services which have important negative ecological and economic impacts that could significantly affect the maintenance of wild plant diversity, wider ecosystem stability, crop production, food security and human welfare.

4,608 citations

Journal ArticleDOI

3,734 citations

Journal ArticleDOI
TL;DR: A common pattern of phylogenetic conservatism in ecological character is recognized and the challenges of using phylogenies of partial lineages are highlighted and phylogenetic approaches to three emergent properties of communities: species diversity, relative abundance distributions, and range sizes are reviewed.
Abstract: ▪ Abstract As better phylogenetic hypotheses become available for many groups of organisms, studies in community ecology can be informed by knowledge of the evolutionary relationships among coexisting species. We note three primary approaches to integrating phylogenetic information into studies of community organization: 1. examining the phylogenetic structure of community assemblages, 2. exploring the phylogenetic basis of community niche structure, and 3. adding a community context to studies of trait evolution and biogeography. We recognize a common pattern of phylogenetic conservatism in ecological character and highlight the challenges of using phylogenies of partial lineages. We also review phylogenetic approaches to three emergent properties of communities: species diversity, relative abundance distributions, and range sizes. Methodological advances in phylogenetic supertree construction, character reconstruction, null models for community assembly and character evolution, and metrics of community ...

3,615 citations

Book ChapterDOI
31 Jan 1963

2,885 citations