Author
Diep N. Nguyen
Other affiliations: Cancer Council New South Wales, University of Arizona, Macquarie University ...read more
Bio: Diep N. Nguyen is an academic researcher from University of Technology, Sydney. The author has contributed to research in topics: Computer science & MIMO. The author has an hindex of 26, co-authored 195 publications receiving 2083 citations. Previous affiliations of Diep N. Nguyen include Cancer Council New South Wales & University of Arizona.
Papers published on a yearly basis
Papers
More filters
Imperial College London1, Laval University2, Harvard University3, Cancer Council New South Wales4, University of New South Wales5, University of Sydney6, University of Oslo7, University of London8, University of Hong Kong9, Public Health England10, International Agency for Research on Cancer11, World Health Organization12
TL;DR: It is suggested that high HPV vaccination coverage of girls can lead to cervical cancer elimination in most LMICs by the end of the century, and elimination could occur between 2059 and 2102, depending on the threshold and region.
Abstract: Summary Background The WHO Director-General has issued a call for action to eliminate cervical cancer as a public health problem. To help inform global efforts, we modelled potential human papillomavirus (HPV) vaccination and cervical screening scenarios in low-income and lower-middle-income countries (LMICs) to examine the feasibility and timing of elimination at different thresholds, and to estimate the number of cervical cancer cases averted on the path to elimination. Methods The WHO Cervical Cancer Elimination Modelling Consortium (CCEMC), which consists of three independent transmission-dynamic models identified by WHO according to predefined criteria, projected reductions in cervical cancer incidence over time in 78 LMICs for three standardised base-case scenarios: girls-only vaccination; girls-only vaccination and once-lifetime screening; and girls-only vaccination and twice-lifetime screening. Girls were vaccinated at age 9 years (with a catch-up to age 14 years), assuming 90% coverage and 100% lifetime protection against HPV types 16, 18, 31, 33, 45, 52, and 58. Cervical screening involved HPV testing once or twice per lifetime at ages 35 years and 45 years, with uptake increasing from 45% (2023) to 90% (2045 onwards). The elimination thresholds examined were an average age-standardised cervical cancer incidence of four or fewer cases per 100 000 women-years and ten or fewer cases per 100 000 women-years, and an 85% or greater reduction in incidence. Sensitivity analyses were done, varying vaccination and screening strategies and assumptions. We summarised results using the median (range) of model predictions. Findings Girls-only HPV vaccination was predicted to reduce the median age-standardised cervical cancer incidence in LMICs from 19·8 (range 19·4–19·8) to 2·1 (2·0–2·6) cases per 100 000 women-years over the next century (89·4% [86·2–90·1] reduction), and to avert 61·0 million (60·5–63·0) cases during this period. Adding twice-lifetime screening reduced the incidence to 0·7 (0·6–1·6) cases per 100 000 women-years (96·7% [91·3–96·7] reduction) and averted an extra 12·1 million (9·5–13·7) cases. Girls-only vaccination was predicted to result in elimination in 60% (58–65) of LMICs based on the threshold of four or fewer cases per 100 000 women-years, in 99% (89–100) of LMICs based on the threshold of ten or fewer cases per 100 000 women-years, and in 87% (37–99) of LMICs based on the 85% or greater reduction threshold. When adding twice-lifetime screening, 100% (71–100) of LMICs reached elimination for all three thresholds. In regions in which all countries can achieve cervical cancer elimination with girls-only vaccination, elimination could occur between 2059 and 2102, depending on the threshold and region. Introducing twice-lifetime screening accelerated elimination by 11–31 years. Long-term vaccine protection was required for elimination. Interpretation Predictions were consistent across our three models and suggest that high HPV vaccination coverage of girls can lead to cervical cancer elimination in most LMICs by the end of the century. Screening with high uptake will expedite reductions and will be necessary to eliminate cervical cancer in countries with the highest burden. Funding WHO, UNDP, UN Population Fund, UNICEF–WHO–World Bank Special Program of Research, Development and Research Training in Human Reproduction, Canadian Institute of Health Research, Fonds de recherche du Quebec–Sante, Compute Canada, National Health and Medical Research Council Australia Centre for Research Excellence in Cervical Cancer Control.
358 citations
Christopher J L Murray1, Cristiana Abbafati2, Kaja Abbas3, Mohammad Abbasi +863 more•Institutions (10)
TL;DR: Five key insights that are important for health, social, and economic development strategies have been distilled are distilled and are subject to the many limitations outlined in each of the component GBD capstone papers.
Abstract: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a rules-based synthesis of the available evidence on levels and trends in health outcomes, a diverse set of risk factors, and health system responses. GBD 2019 covered 204 countries and territories, as well as first administrative level disaggregations for 22 countries, from 1990 to 2019. Because GBD is highly standardised and comprehensive, spanning both fatal and non-fatal outcomes, and uses a mutually exclusive and collectively exhaustive list of hierarchical disease and injury causes, the study provides a powerful basis for detailed and broad insights on global health trends and emerging challenges. GBD 2019 incorporates data from 281 586 sources and provides more than 3·5 billion estimates of health outcome and health system measures of interest for global, national, and subnational policy dialogue. All GBD estimates are publicly available and adhere to the Guidelines on Accurate and Transparent Health Estimate Reporting. From this vast amount of information, five key insights that are important for health, social, and economic development strategies have been distilled. These insights are subject to the many limitations outlined in each of the component GBD capstone papers.
303 citations
TL;DR: The impact of achieving the 90–70–90 triple-intervention targets on cervical cancer mortality and deaths averted over the next century is assessed and the potential for the elimination initiative to support target 3.4 of the UN Sustainable Development Goals is assessed.
Abstract: Summary Background WHO is developing a global strategy towards eliminating cervical cancer as a public health problem, which proposes an elimination threshold of four cases per 100 000 women and includes 2030 triple-intervention coverage targets for scale-up of human papillomavirus (HPV) vaccination to 90%, twice-lifetime cervical screening to 70%, and treatment of pre-invasive lesions and invasive cancer to 90%. We assessed the impact of achieving the 90–70–90 triple-intervention targets on cervical cancer mortality and deaths averted over the next century. We also assessed the potential for the elimination initiative to support target 3.4 of the UN Sustainable Development Goals (SDGs)—a one-third reduction in premature mortality from non-communicable diseases by 2030. Methods The WHO Cervical Cancer Elimination Modelling Consortium (CCEMC) involves three independent, dynamic models of HPV infection, cervical carcinogenesis, screening, and precancer and invasive cancer treatment. Reductions in age-standardised rates of cervical cancer mortality in 78 low-income and lower-middle-income countries (LMICs) were estimated for three core scenarios: girls-only vaccination at age 9 years with catch-up for girls aged 10–14 years; girls-only vaccination plus once-lifetime screening and cancer treatment scale-up; and girls-only vaccination plus twice-lifetime screening and cancer treatment scale-up. Vaccination was assumed to provide 100% lifetime protection against infections with HPV types 16, 18, 31, 33, 45, 52, and 58, and to scale up to 90% coverage in 2020. Cervical screening involved HPV testing at age 35 years, or at ages 35 years and 45 years, with scale-up to 45% coverage by 2023, 70% by 2030, and 90% by 2045, and we assumed that 50% of women with invasive cervical cancer would receive appropriate surgery, radiotherapy, and chemotherapy by 2023, which would increase to 90% by 2030. We summarised results using the median (range) of model predictions. Findings In 2020, the estimated cervical cancer mortality rate across all 78 LMICs was 13·2 (range 12·9–14·1) per 100 000 women. Compared to the status quo, by 2030, vaccination alone would have minimal impact on cervical cancer mortality, leading to a 0·1% (0·1–0·5) reduction, but additionally scaling up twice-lifetime screening and cancer treatment would reduce mortality by 34·2% (23·3–37·8), averting 300 000 (300 000–400 000) deaths by 2030 (with similar results for once-lifetime screening). By 2070, scaling up vaccination alone would reduce mortality by 61·7% (61·4–66·1), averting 4·8 million (4·1–4·8) deaths. By 2070, additionally scaling up screening and cancer treatment would reduce mortality by 88·9% (84·0–89·3), averting 13·3 million (13·1–13·6) deaths (with once-lifetime screening), or by 92·3% (88·4–93·0), averting 14·6 million (14·1–14·6) deaths (with twice-lifetime screening). By 2120, vaccination alone would reduce mortality by 89·5% (86·6–89·9), averting 45·8 million (44·7–46·4) deaths. By 2120, additionally scaling up screening and cancer treatment would reduce mortality by 97·9% (95·0–98·0), averting 60·8 million (60·2–61·2) deaths (with once-lifetime screening), or by 98·6% (96·5–98·6), averting 62·6 million (62·1–62·8) deaths (with twice-lifetime screening). With the WHO triple-intervention strategy, over the next 10 years, about half (48% [45–55]) of deaths averted would be in sub-Saharan Africa and almost a third (32% [29–34]) would be in South Asia; over the next 100 years, almost 90% of deaths averted would be in these regions. For premature deaths (age 30–69 years), the WHO triple-intervention strategy would result in rate reductions of 33·9% (24·4–37·9) by 2030, 96·2% (94·3–96·8) by 2070, and 98·6% (96·9–98·8) by 2120. Interpretation These findings emphasise the importance of acting immediately on three fronts to scale up vaccination, screening, and treatment for pre-invasive and invasive cervical cancer. In the next 10 years, a one-third reduction in the rate of premature mortality from cervical cancer in LMICs is possible, contributing to the realisation of the 2030 UN SDGs. Over the next century, successful implementation of the WHO elimination strategy would reduce cervical cancer mortality by almost 99% and save more than 62 million women's lives. Funding WHO, UNDP, UN Population Fund, UNICEF–WHO–World Bank Special Program of Research, Development and Research Training in Human Reproduction, Germany Federal Ministry of Health, National Health and Medical Research Council Australia, Centre for Research Excellence in Cervical Cancer Control, Canadian Institute of Health Research, Compute Canada, and Fonds de recherche du Quebec–Sante.
278 citations
TL;DR: Results show that the ratio between the block reward and the total network stake has a significant impact on the decentralization of the network, particularly in the field of Internet of Vehicles.
Abstract: The rapid development of blockchain technology and their numerous emerging applications has received huge attention in recent years. The distributed consensus mechanism is the backbone of a blockchain network. It plays a key role in ensuring the network’s security, integrity, and performance. Most current blockchain networks have been deploying the proof-of-work consensus mechanisms, in which the consensus is reached through intensive mining processes. However, this mechanism has several limitations, e.g., energy inefficiency, delay, and vulnerable to security threats. To overcome these problems, a new consensus mechanism has been developed recently, namely proof of stake, which enables to achieve the consensus via proving the stake ownership. This mechanism is expected to become a cutting-edge technology for future blockchain networks. This paper is dedicated to investigating proof-of-stake mechanisms, from fundamental knowledge to advanced proof-of-stake-based protocols along with performance analysis, e.g., energy consumption, delay, and security, as well as their promising applications, particularly in the field of Internet of Vehicles. The formation of stake pools and their effects on the network stake distribution are also analyzed and simulated. The results show that the ratio between the block reward and the total network stake has a significant impact on the decentralization of the network. Technical challenges and potential solutions are also discussed.
255 citations
TL;DR: This paper evaluates the relevant PHY and MAC techniques for their ability to improve the reliability and reduce the latency and identifies that enabling long-term evolution to coexist in the unlicensed spectrum is also a potential enabler of URLLC in theUnlicensed band.
Abstract: Future 5th generation networks are expected to enable three key services—enhanced mobile broadband, massive machine type communications and ultra-reliable and low latency communications (URLLC). As per the 3rd generation partnership project URLLC requirements, it is expected that the reliability of one transmission of a 32 byte packet will be at least 99.999% and the latency will be at most 1 ms. This unprecedented level of reliability and latency will yield various new applications, such as smart grids, industrial automation and intelligent transport systems. In this survey we present potential future URLLC applications, and summarize the corresponding reliability and latency requirements. We provide a comprehensive discussion on physical (PHY) and medium access control (MAC) layer techniques that enable URLLC, addressing both licensed and unlicensed bands. This paper evaluates the relevant PHY and MAC techniques for their ability to improve the reliability and reduce the latency. We identify that enabling long-term evolution to coexist in the unlicensed spectrum is also a potential enabler of URLLC in the unlicensed band, and provide numerical evaluations. Lastly, this paper discusses the potential future research directions and challenges in achieving the URLLC requirements.
185 citations
Cited by
More filters
TL;DR: The GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer (IARC) as mentioned in this paper show that female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung cancer, colorectal (11 4.4%), liver (8.3%), stomach (7.7%) and female breast (6.9%), and cervical cancer (5.6%) cancers.
Abstract: This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
35,190 citations
TL;DR: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) aims to provide a standardised and comprehensive measurement of these metrics at global, regional, and national levels.
Abstract: Summary Background Regularly updated data on stroke and its pathological types, including data on their incidence, prevalence, mortality, disability, risk factors, and epidemiological trends, are important for evidence-based stroke care planning and resource allocation. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) aims to provide a standardised and comprehensive measurement of these metrics at global, regional, and national levels. Methods We applied GBD 2019 analytical tools to calculate stroke incidence, prevalence, mortality, disability-adjusted life-years (DALYs), and the population attributable fraction (PAF) of DALYs (with corresponding 95% uncertainty intervals [UIs]) associated with 19 risk factors, for 204 countries and territories from 1990 to 2019. These estimates were provided for ischaemic stroke, intracerebral haemorrhage, subarachnoid haemorrhage, and all strokes combined, and stratified by sex, age group, and World Bank country income level. Findings In 2019, there were 12·2 million (95% UI 11·0–13·6) incident cases of stroke, 101 million (93·2–111) prevalent cases of stroke, 143 million (133–153) DALYs due to stroke, and 6·55 million (6·00–7·02) deaths from stroke. Globally, stroke remained the second-leading cause of death (11·6% [10·8–12·2] of total deaths) and the third-leading cause of death and disability combined (5·7% [5·1–6·2] of total DALYs) in 2019. From 1990 to 2019, the absolute number of incident strokes increased by 70·0% (67·0–73·0), prevalent strokes increased by 85·0% (83·0–88·0), deaths from stroke increased by 43·0% (31·0–55·0), and DALYs due to stroke increased by 32·0% (22·0–42·0). During the same period, age-standardised rates of stroke incidence decreased by 17·0% (15·0–18·0), mortality decreased by 36·0% (31·0–42·0), prevalence decreased by 6·0% (5·0–7·0), and DALYs decreased by 36·0% (31·0–42·0). However, among people younger than 70 years, prevalence rates increased by 22·0% (21·0–24·0) and incidence rates increased by 15·0% (12·0–18·0). In 2019, the age-standardised stroke-related mortality rate was 3·6 (3·5–3·8) times higher in the World Bank low-income group than in the World Bank high-income group, and the age-standardised stroke-related DALY rate was 3·7 (3·5–3·9) times higher in the low-income group than the high-income group. Ischaemic stroke constituted 62·4% of all incident strokes in 2019 (7·63 million [6·57–8·96]), while intracerebral haemorrhage constituted 27·9% (3·41 million [2·97–3·91]) and subarachnoid haemorrhage constituted 9·7% (1·18 million [1·01–1·39]). In 2019, the five leading risk factors for stroke were high systolic blood pressure (contributing to 79·6 million [67·7–90·8] DALYs or 55·5% [48·2–62·0] of total stroke DALYs), high body-mass index (34·9 million [22·3–48·6] DALYs or 24·3% [15·7–33·2]), high fasting plasma glucose (28·9 million [19·8–41·5] DALYs or 20·2% [13·8–29·1]), ambient particulate matter pollution (28·7 million [23·4–33·4] DALYs or 20·1% [16·6–23·0]), and smoking (25·3 million [22·6–28·2] DALYs or 17·6% [16·4–19·0]). Interpretation The annual number of strokes and deaths due to stroke increased substantially from 1990 to 2019, despite substantial reductions in age-standardised rates, particularly among people older than 70 years. The highest age-standardised stroke-related mortality and DALY rates were in the World Bank low-income group. The fastest-growing risk factor for stroke between 1990 and 2019 was high body-mass index. Without urgent implementation of effective primary prevention strategies, the stroke burden will probably continue to grow across the world, particularly in low-income countries. Funding Bill & Melinda Gates Foundation.
1,473 citations
TL;DR: Recent studies have identified additional K. pneumoniae virulence factors and led to more insights about factors important for the growth of this pathogen at a variety of tissue sites, but much work is left to be done in characterizing these newly discovered factors.
Abstract: Klebsiella pneumoniae causes a wide range of infections, including pneumonias, urinary tract infections, bacteremias, and liver abscesses. Historically, K. pneumoniae has caused serious infection primarily in immunocompromised individuals, but the recent emergence and spread of hypervirulent strains have broadened the number of people susceptible to infections to include those who are healthy and immunosufficient. Furthermore, K. pneumoniae strains have become increasingly resistant to antibiotics, rendering infection by these strains very challenging to treat. The emergence of hypervirulent and antibiotic-resistant strains has driven a number of recent studies. Work has described the worldwide spread of one drug-resistant strain and a host defense axis, interleukin-17 (IL-17), that is important for controlling infection. Four factors, capsule, lipopolysaccharide, fimbriae, and siderophores, have been well studied and are important for virulence in at least one infection model. Several other factors have been less well characterized but are also important in at least one infection model. However, there is a significant amount of heterogeneity in K. pneumoniae strains, and not every factor plays the same critical role in all virulent Klebsiella strains. Recent studies have identified additional K. pneumoniae virulence factors and led to more insights about factors important for the growth of this pathogen at a variety of tissue sites. Many of these genes encode proteins that function in metabolism and the regulation of transcription. However, much work is left to be done in characterizing these newly discovered factors, understanding how infections differ between healthy and immunocompromised patients, and identifying attractive bacterial or host targets for treating these infections.
988 citations
TL;DR: This paper bridges the gap between deep learning and mobile and wireless networking research, by presenting a comprehensive survey of the crossovers between the two areas, and provides an encyclopedic review of mobile and Wireless networking research based on deep learning, which is categorize by different domains.
Abstract: The rapid uptake of mobile devices and the rising popularity of mobile applications and services pose unprecedented demands on mobile and wireless networking infrastructure. Upcoming 5G systems are evolving to support exploding mobile traffic volumes, real-time extraction of fine-grained analytics, and agile management of network resources, so as to maximize user experience. Fulfilling these tasks is challenging, as mobile environments are increasingly complex, heterogeneous, and evolving. One potential solution is to resort to advanced machine learning techniques, in order to help manage the rise in data volumes and algorithm-driven applications. The recent success of deep learning underpins new and powerful tools that tackle problems in this space. In this paper, we bridge the gap between deep learning and mobile and wireless networking research, by presenting a comprehensive survey of the crossovers between the two areas. We first briefly introduce essential background and state-of-the-art in deep learning techniques with potential applications to networking. We then discuss several techniques and platforms that facilitate the efficient deployment of deep learning onto mobile systems. Subsequently, we provide an encyclopedic review of mobile and wireless networking research based on deep learning, which we categorize by different domains. Drawing from our experience, we discuss how to tailor deep learning to mobile environments. We complete this survey by pinpointing current challenges and open future directions for research.
975 citations