scispace - formally typeset
Search or ask a question
Author

Dieter Bäuerle

Bio: Dieter Bäuerle is an academic researcher from Johannes Kepler University of Linz. The author has contributed to research in topics: Thin film & Pulsed laser deposition. The author has an hindex of 39, co-authored 236 publications receiving 7407 citations. Previous affiliations of Dieter Bäuerle include Voestalpine & University of California.


Papers
More filters
Book
01 Jan 1996
TL;DR: In this paper, the authors provide an overview and fundamentals of Lasers in Medicine, Biotechnology and Arts: Lasers In Medicine and Biotechnology, Restoration and Conservation of Artworks.
Abstract: Part I Overview and Fundamentals: Introduction.- Thermal, Photophysical, and Photochemical Processes.- Reaction Kinetics and Transport of Species.- Nucleation and Cluster Formation.- Lasers, Experimental Aspects, Spatial Confinement.- Part II Temperature Distributions and Surface Melting: General Solutions of the Heat Equations.- Semi-infinite Substrates.- Infinite Slabs.- Non-uniform Media.- Surface Melting.- Part III Material Removal: Vaporization, Plasma Formation.- Nanosecond-Laser Ablation.- Ultrashort-Pulse Laser Ablation.- Etching of Metals and Insulators.- Etching of Semiconductors.- Part IV Material Deposition: Laser-CVD of Microstructures.- Growth of Fibers.- Direct Writing.- Thin-Film Formation by Laser-CVD.- Adsorbed Layers, Laser-MBE.- Liquid-Phase Deposition, Electroplating.- Thin-Film Formation by Pulsed-Laser Deposition and Laser-Induced Evaporation.- Part V Material Transformations, Synthesis and Structure Formation: Material Transformations, Laser Cleaning.- Doping.- Cladding, Alloying, and Synthesis.- Oxidation, Nitridation, and Reduction.- Transformation and Functionalization of Organic Materials.- Instabilities and Structure Formation.- Part VI Diagnostic Techniques, Plasmas: Diagnostic Techniques.- Analysis of Species and Plasmas,- Part VII Lasers in Medicine, Biotechnology and Arts: Lasers in Medicine and Biotechnology.- Restoration and Conservation of Artworks.

2,359 citations

Journal ArticleDOI
TL;DR: In this paper, a review of laser-induced material processing is presented with special emphasis on recent achievements mainly obtained by the Linz group, such as using optical fiber tips for nanoscale photophysical etching, the pulsed-laser deposition of thin films of high-temperature superconductors and polytetrafluoroethylene (PTFE), and the laser cleaning of surfaces.

314 citations

Journal ArticleDOI
TL;DR: Film-thickness profiles obtained in pulsed-laser deposition are calculated by using the well-known solution of the gas-dynamic equations which describes the expansion of the plasma plume in vacuum.
Abstract: Film-thickness profiles obtained in pulsed-laser deposition are calculated by using the well-known solution of the gas-dynamic equations which describes the expansion of the plasma plume in vacuum. The time for plasma formation is supposed to be short compared with the time of expansion. The film profile depends on the initial dimensions of the plume and on the adiabatic exponent of the vapor.

268 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe an apparatus designed for rapid in-situ analysis of solid and molten metals at variable distances of up to 1.5 m. The LIBS signal is guided by a fiber optic bundle of 12m length to the spectrometer.

153 citations

Journal ArticleDOI
TL;DR: In this paper, a regular lattice of SiO2 microspheres on a quartz support is used as a microlens array for laser-induced surface patterning of polyimide foils.
Abstract: A regular lattice of SiO2 microspheres on a quartz support is used as a microlens array for laser-induced surface patterning of polyimide foils.

126 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The field of cavity optomechanics explores the interaction between electromagnetic radiation and nano-or micromechanical motion as mentioned in this paper, which explores the interactions between optical cavities and mechanical resonators.
Abstract: We review the field of cavity optomechanics, which explores the interaction between electromagnetic radiation and nano- or micromechanical motion This review covers the basics of optical cavities and mechanical resonators, their mutual optomechanical interaction mediated by the radiation pressure force, the large variety of experimental systems which exhibit this interaction, optical measurements of mechanical motion, dynamical backaction amplification and cooling, nonlinear dynamics, multimode optomechanics, and proposals for future cavity quantum optomechanics experiments In addition, we describe the perspectives for fundamental quantum physics and for possible applications of optomechanical devices

4,031 citations

Journal ArticleDOI
TL;DR: It was found that the structure and morphology also affect the energy transport among tissue constituents and therefore the ablation efficiency of biological tissues is increased.
Abstract: Author(s): Vogel, Alfred; Venugopalan, Vasan | Abstract: The mechanisms of pulsed laser ablation of biological tissues were studied. The transiently empty space created between the fiber tip and the tissue surface improved the optical transmission to the target and thus increased the ablation efficiency. It was found that the structure and morphology also affect the energy transport among tissue constituents.

1,861 citations

Book
12 Mar 2014
TL;DR: In this paper, the effect of reflectivity of the surface, when a pure, monochromatic laser (6) is used, is remedied by the simultaneous application of a relatively shorter wavelength beam (1).
Abstract: In the laser treatment of a workpiece (9), e.g. for surface hardening, melting, alloying, cladding, welding or cutting, the adverse effect of reflectivity of the surface, when a pure, monochromatic laser (6) is used, is remedied by the simultaneous application of a relatively shorter wavelength beam (1). The two beams (1)(5) may be combined by a beam coupler (4) or may reach the workpiece (9) by separate optical paths (not shown). The shorter wavelength beam (1) improves the coupling efficiency of the higher- powered laser beam (5).

1,539 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a perspective on the recent developments in the transmission of light through subwavelength apertures in metal films, and the physical mechanisms operating in the different structures considered are analyzed within a common theoretical framework.
Abstract: This review provides a perspective on the recent developments in the transmission of light through subwavelength apertures in metal films. The main focus is on the phenomenon of extraordinary optical transmission in periodic hole arrays, discovered over a decade ago. It is shown that surface electromagnetic modes play a key role in the emergence of the resonant transmission. These modes are also shown to be at the root of both the enhanced transmission and beaming of light found in single apertures surrounded by periodic corrugations. This review describes both the theoretical and experimental aspects of the subject. For clarity, the physical mechanisms operating in the different structures considered are analyzed within a common theoretical framework. Several applications based on the transmission properties of subwavelength apertures are also addressed.

1,160 citations

Journal ArticleDOI
TL;DR: The current state-of-the-art of analytical LIBS is summarized, providing a contemporary snapshot of LIBS applications, and highlighting new directions in laser-induced breakdown spectroscopy, such as novel approaches, instrumental developments, and advanced use of chemometric tools are discussed.
Abstract: The first part of this two-part review focused on the fundamental and diagnostics aspects of laser-induced plasmas, only touching briefly upon concepts such as sensitivity and detection limits and largely omitting any discussion of the vast panorama of the practical applications of the technique. Clearly a true LIBS community has emerged, which promises to quicken the pace of LIBS developments, applications, and implementations. With this second part, a more applied flavor is taken, and its intended goal is summarizing the current state-of-the-art of analytical LIBS, providing a contemporary snapshot of LIBS applications, and highlighting new directions in laser-induced breakdown spectroscopy, such as novel approaches, instrumental developments, and advanced use of chemometric tools. More specifically, we discuss instrumental and analytical approaches (e.g., double- and multi-pulse LIBS to improve the sensitivity), calibration-free approaches, hyphenated approaches in which techniques such as Raman and fluorescence are coupled with LIBS to increase sensitivity and information power, resonantly enhanced LIBS approaches, signal processing and optimization (e.g., signal-to-noise analysis), and finally applications. An attempt is made to provide an updated view of the role played by LIBS in the various fields, with emphasis on applications considered to be unique. We finally try to assess where LIBS is going as an analytical field, where in our opinion it should go, and what should still be done for consolidating the technique as a mature method of chemical analysis.

1,159 citations