scispace - formally typeset
Search or ask a question
Author

Dieter Haas

Bio: Dieter Haas is an academic researcher from ETH Zurich. The author has contributed to research in topics: Plasmid & Pseudomonas fluorescens. The author has an hindex of 38, co-authored 64 publications receiving 7005 citations. Previous affiliations of Dieter Haas include University of Lausanne & Monash University, Clayton campus.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that bacterial cyanide is an important but not the only factor involved in suppression of black root rot in Pseudomonas fluorescens CHA0.
Abstract: Pseudomonas fluorescens CHA0 suppresses black root rot of tobacco, a disease caused by the fungus Thielaviopsis basicola. Strain CHA0 excretes several metabolites with antifungal properties. The importance of one such metabolite, hydrogen cyanide, was tested in a gnotobiotic system containing an artificial, iron-rich soil. A cyanidenegative (hcn) mutant, CHA5, constructed by a gene replacement technique, protected the tobacco plant less effectively than did the wild-type CHA0. Complementation of strain CHA5 by the cloned wild-type hcn+ genes restored the strain's ability to suppress disease. An artificial transposon carrying the hcn+ genes of strain CHA0 (Tnhcn) was constructed and inserted into the genome of another P.fluorescens strain, P3, which naturally does not produce cyanide and gives poor plant protection. The P3::Tnhcn derivative synthesized cyanide and exhibited an improved ability to suppress disease. All bacterial strains colonized the roots similarly and did not influence significantly the survival of T.basicola in soil. We conclude that bacterial cyanide is an important but not the only factor involved in suppression of black root rot.

660 citations

Journal ArticleDOI
TL;DR: Pseudomonas fluorescens strain CHAO suppresses Thielaviopsis basicola-induced black root rot of tobacco and Gaeumannomyces graminis var. tritici-induced take-all of wheat.
Abstract: Pseudomonas fluorescens strain CHAO suppresses Thielaviopsis basicola-induced black root rot of tobacco and Gaeumannomyces graminis var. tritici-induced take-all of wheat. Strain CHAO produces 2,4-diacetylphloroglucinol, a metabolite with antifungal, antibacterial, and phytotoxic activity. The role of this compound in disease suppression was tested under gnotobiotic conditions. A P. fluorescens mutant, obtained by Tn5 insertion, did not produce 2,4-diacetylphloroglucinol, showed diminished inhibition of T. basicola and of G. g. var. tritici in vitro, and had a reduced suppressive effect on tobacco black root rot and on take-all of wheat, compared with wild-type CHAO. Complementation of the mutant with an 11-kb DNA fragment from a genomic library of wild-type CHAO largely restored production of the metabolite, inhibition of the fungal pathogens in vitro and disease suppression. The Tn5 insertion was physically mapped using a 5.8-kb complementing fragment as a probe. 2,4- Diacetylphloroglucinol was shown to be produced in the rhizosphere of wheat by strain CHAO and by the complemented mutant, but not by the mutant defective in 2,4-diacetylphloroglucinol synthesis. These results support the importance of 2,4-diacetylphloroglucinol production by strain CHAO in the suppression of soilborne plant pathogens in the rhizosphere.

592 citations

Journal ArticleDOI
TL;DR: The compiled IncP alpha sequence revealed several previously unidentified reading frames that are potential genes, and KorA and KorB act synergistically in several cases by recognizing and binding to conserved nucleotide sequences, all encoded in two divergent operons.

486 citations

Journal ArticleDOI
TL;DR: It is suggested that the GacS/GacA system operates a switch between primary and secondary metabolism, with a major involvement of posttranscriptional control mechanisms.
Abstract: The sensor kinase GacS and the response regulator GacA are members of a two-component system that is present in a wide variety of gram-negative bacteria and has been studied mainly in enteric bacteria and fluorescent pseudomonads. The GacS/GacA system controls the production of secondary metabolites and extracellular enzymes involved in pathogenicity to plants and animals, biocontrol of soilborne plant diseases, ecological fitness, or tolerance to stress. A current model proposes that GacS senses a still-unknown signal and activates, via a phosphorelay mechanism, the GacA transcription regulator, which in turn triggers the expression of target genes. The GacS protein belongs to the unorthodox sensor kinases, characterized by an autophosphorylation, a receiver, and an output domain. The periplasmic loop domain of GacS is poorly conserved in diverse bacteria. Thus, a common signal interacting with this domain would be unexpected. Based on a comparison with the transcriptional regulator NarL, a secondary structure can be predicted for the GacA sensor kinases. Certain genes whose expression is regulated by the GacS/GacA system are regulated in parallel by the small RNA binding protein RsmA (CsrA) at a posttranscriptional level. It is suggested that the GacS/GacA system operates a switch between primary and secondary metabolism, with a major involvement of posttranscriptional control mechanisms.

456 citations

Journal ArticleDOI
TL;DR: The gacA mutants of strain CHA0 have a drastically reduced ability to suppress black root rot under gnotobiotic conditions, supporting the previous observations that the antibiotic Phl and HCN individually contribute to the suppression of blackroot rot.
Abstract: Pseudomonas fluorescens CHA0 colonizes plant roots, produces several secondary metabolites in stationary growth phase, and suppresses a number of plant diseases, including Thielaviopsis basicola-induced black root rot of tobacco. We discovered that mutations in a P. fluorescens gene named gacA (for global antibiotic and cyanide control) pleiotropically block the production of the secondary metabolites 2,4-diacetylphloroglucinol (Phl), HCN, and pyoluteorin. The gacA mutants of strain CHA0 have a drastically reduced ability to suppress black root rot under gnotobiotic conditions, supporting the previous observations that the antibiotic Phl and HCN individually contribute to the suppression of black root rot. The gacA gene is directly followed by a uvrC gene. Double gacA-uvrC mutations render P. fluorescens sensitive to UV irradiation. The gacA-uvrC cluster is homologous to the orf-2 (= uvrY)-uvrC operon of Escherichia coli. The gacA gene specifies a trans-active 24-kDa protein. Sequence data indicate that the GacA protein is a response regulator in the FixJ/DegU family of two-component regulatory systems. Expression of the gacA gene itself was increased in stationary phase. We propose that GacA, perhaps activated by conditions of restricted growth, functions as a global regulator of secondary metabolism in P. fluorescens.

390 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Denitrification is intimately related to fundamental cellular processes that include primary and secondary transport, protein translocation, cytochrome c biogenesis, anaerobic gene regulation, metalloprotein assembly, and the biosynthesis of the cofactors molybdopterin and heme D1.
Abstract: Denitrification is a distinct means of energy conservation, making use of N oxides as terminal electron acceptors for cellular bioenergetics under anaerobic, microaerophilic, and occasionally aerobic conditions. The process is an essential branch of the global N cycle, reversing dinitrogen fixation, and is associated with chemolithotrophic, phototrophic, diazotrophic, or organotrophic metabolism but generally not with obligately anaerobic life. Discovered more than a century ago and believed to be exclusively a bacterial trait, denitrification has now been found in halophilic and hyperthermophilic archaea and in the mitochondria of fungi, raising evolutionarily intriguing vistas. Important advances in the biochemical characterization of denitrification and the underlying genetics have been achieved with Pseudomonas stutzeri, Pseudomonas aeruginosa, Paracoccus denitrificans, Ralstonia eutropha, and Rhodobacter sphaeroides. Pseudomonads represent one of the largest assemblies of the denitrifying bacteria within a single genus, favoring their use as model organisms. Around 50 genes are required within a single bacterium to encode the core structures of the denitrification apparatus. Much of the denitrification process of gram-negative bacteria has been found confined to the periplasm, whereas the topology and enzymology of the gram-positive bacteria are less well established. The activation and enzymatic transformation of N oxides is based on the redox chemistry of Fe, Cu, and Mo. Biochemical breakthroughs have included the X-ray structures of the two types of respiratory nitrite reductases and the isolation of the novel enzymes nitric oxide reductase and nitrous oxide reductase, as well as their structural characterization by indirect spectroscopic means. This revealed unexpected relationships among denitrification enzymes and respiratory oxygen reductases. Denitrification is intimately related to fundamental cellular processes that include primary and secondary transport, protein translocation, cytochrome c biogenesis, anaerobic gene regulation, metalloprotein assembly, and the biosynthesis of the cofactors molybdopterin and heme D1. An important class of regulators for the anaerobic expression of the denitrification apparatus are transcription factors of the greater FNR family. Nitrate and nitric oxide, in addition to being respiratory substrates, have been identified as signaling molecules for the induction of distinct N oxide-metabolizing enzymes.

3,232 citations

Journal ArticleDOI
TL;DR: The ways in which plant growth promoting rhizobacteria facilitate the growth of plants are considered and discussed and the possibility of improving plant growth promotion by specific genetic manipulation is critically examined.
Abstract: The ways in which plant growth promoting rhizobacteria facilitate the growth of plants are considered and discussed. Both indirect and direct mechanisms of plant growth promotion are dealt with. Th...

2,529 citations

Journal ArticleDOI
TL;DR: Biocontrol strains of fluorescent pseudomonads produce antifungal antibiotics, elicit induced systemic resistance in the host plant or interfere specifically with fungal pathogenicity factors during root colonization.
Abstract: Particular bacterial strains in certain natural environments prevent infectious diseases of plant roots. How these bacteria achieve this protection from pathogenic fungi has been analysed in detail in biocontrol strains of fluorescent pseudomonads. During root colonization, these bacteria produce antifungal antibiotics, elicit induced systemic resistance in the host plant or interfere specifically with fungal pathogenicity factors. Before engaging in these activities, biocontrol bacteria go through several regulatory processes at the transcriptional and post-transcriptional levels.

2,263 citations

Journal ArticleDOI
TL;DR: As agricultural production intensified over the past few decades, producers became more and more dependent on agrochemicals as a relatively reliable method of crop production.
Abstract: Pathogenic microorganisms affecting plant health are a major and chronic threat to food production and ecosystem stability worldwide As agricultural production intensified over the past few decades, producers became more and more dependent on agrochemicals as a relatively reliable method of crop

2,246 citations

Journal ArticleDOI
TL;DR: Reassembly of multiple genomes has provided insight into energy and nutrient cycling within the community, genome structure, gene function, population genetics and microheterogeneity, and lateral gene transfer among members of an uncultured community.
Abstract: Metagenomics (also referred to as environmental and community genomics) is the genomic analysis of microorganisms by direct extraction and cloning of DNA from an assemblage of microorganisms. The development of metagenomics stemmed from the ineluctable evidence that as-yet-uncultured microorganisms represent the vast majority of organisms in most environments on earth. This evidence was derived from analyses of 16S rRNA gene sequences amplified directly from the environment, an approach that avoided the bias imposed by culturing and led to the discovery of vast new lineages of microbial life. Although the portrait of the microbial world was revolutionized by analysis of 16S rRNA genes, such studies yielded only a phylogenetic description of community membership, providing little insight into the genetics, physiology, and biochemistry of the members. Metagenomics provides a second tier of technical innovation that facilitates study of the physiology and ecology of environmental microorganisms. Novel genes and gene products discovered through metagenomics include the first bacteriorhodopsin of bacterial origin; novel small molecules with antimicrobial activity; and new members of families of known proteins, such as an Na+(Li+)/H+ antiporter, RecA, DNA polymerase, and antibiotic resistance determinants. Reassembly of multiple genomes has provided insight into energy and nutrient cycling within the community, genome structure, gene function, population genetics and microheterogeneity, and lateral gene transfer among members of an uncultured community. The application of metagenomic sequence information will facilitate the design of better culturing strategies to link genomic analysis with pure culture studies.

2,224 citations