scispace - formally typeset
Search or ask a question
Author

Dieter Lutz

Bio: Dieter Lutz is an academic researcher from Max Planck Society. The author has contributed to research in topics: Galaxy & Luminous infrared galaxy. The author has an hindex of 139, co-authored 671 publications receiving 67414 citations. Previous affiliations of Dieter Lutz include California Institute of Technology & University of Groningen.


Papers
More filters
Journal ArticleDOI
TL;DR: The Photodetector Array Camera and Spectrometer (PACS) as discussed by the authors is one of the three science instruments on ESA's far infrared and sub-mil- limetre observatory.
Abstract: The Photodetector Array Camera and Spectrometer (PACS) is one of the three science instruments on ESA's far infrared and submil- limetre observatory. It employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16 × 25 pixels, each, and two filled silicon bolometer arrays with 16 × 32 and 32 × 64 pixels, respectively, to perform integral-field spectroscopy and imaging photom- etry in the 60−210 μm wavelength regime. In photometry mode, it simultaneously images two bands, 60−85 μ mo r 85−125 μ ma nd 125−210 μm, over a field of view of ∼1.75 � × 3.5 � , with close to Nyquist beam sampling in each band. In spectroscopy mode, it images afi eld of 47 �� × 47 �� , resolved into 5 × 5 pixels, with an instantaneous spectral coverage of ∼ 1500 km s −1 and a spectral resolution of ∼175 km s −1 . We summarise the design of the instrument, describe observing modes, calibration, and data analysis methods, and present our current assessment of the in-orbit performance of the instrument based on the performance verification tests. PACS is fully operational, and the achieved performance is close to or better than the pre-launch predictions.

2,645 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the infrared (IR) 3-500μm spectral energy distributions (SEDs) of galaxies at 0 < z < 2.5, supplemented by a local reference sample from IRAS, ISO, Spitzer, and AKARI data.
Abstract: We present the deepest 100 to 500 μm far-infrared observations obtained with the Herschel Space Observatory as part of the GOODS-Herschel key program, and examine the infrared (IR) 3–500 μm spectral energy distributions (SEDs) of galaxies at 0 < z < 2.5, supplemented by a local reference sample from IRAS, ISO, Spitzer, and AKARI data. We determine the projected star formation densities of local galaxies from their radio and mid-IR continuum sizes. We find that the ratio of total IR luminosity to rest-frame 8 μm luminosity, IR8 (≡ L_(IR)^(tot)/L_8), follows a Gaussian distribution centered on IR8 = 4 (σ = 1.6) and defines an IR main sequence for star-forming galaxies independent of redshift and luminosity. Outliers from this main sequence produce a tail skewed toward higher values of IR8. This minority population ( 3 × 10^(10) L_⊙ kpc^(-2)) and a high specific star formation rate (i.e., starbursts). The rest-frame, UV-2700 A size of these distant starbursts is typically half that of main sequence galaxies, supporting the correlation between star formation density and starburst activity that is measured for the local sample. Locally, luminous and ultraluminous IR galaxies, (U)LIRGs (L_(IR)^(tot)≥ 10^(11) L_☉), are systematically in the starburst mode, whereas most distant (U)LIRGs form stars in the “normal” main sequence mode. This confusion between two modes of star formation is the cause of the so-called “mid-IR excess” population of galaxies found at z > 1.5 by previous studies. Main sequence galaxies have strong polycyclic aromatic hydrocarbon (PAH) emission line features, a broad far-IR bump resulting from a combination of dust temperatures (T_(dust) ~ 15–50 K), and an effective T_(dust) ~ 31 K, as derived from the peak wavelength of their infrared SED. Galaxies in the starburst regime instead exhibit weak PAH equivalent widths and a sharper far-IR bump with an effective T_(dust)~ 40 K. Finally, we present evidence that the mid-to-far IR emission of X-ray active galactic nuclei (AGN) is predominantly produced by star formation and that candidate dusty AGNs with a power-law emission in the mid-IR systematically occur in compact, dusty starbursts. After correcting for the effect of starbursts on IR8, we identify new candidates for extremely obscured AGNs.

1,235 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an ISO SWS and ISOPHOT-S, mid-infrared spectroscopic survey of 15 ultraluminous IRAS galaxies (LIR ≥ 1012 L ).
Abstract: We present an ISO SWS and ISOPHOT-S, mid-infrared spectroscopic survey of 15 ultraluminous IRAS galaxies (LIR ≥ 1012 L☉). We combine the survey results with a detailed case study, based on arcsecond resolution, near-IR, and millimeter imaging spectroscopy, of one of the sample galaxies (UGC 5101). We compare the near- and mid-IR characteristics of these ultraluminous galaxies to ISO and literature data of 30 starburst and active galactic nuclei (AGN) template galaxies. We find the following: 1. Of the ultraluminous IRAS galaxies in our sample, 70%-80% are predominantly powered by recently formed massive stars, and 20%-30% are powered by a central AGN. These conclusions are based on a new infrared diagnostic diagram involving the ratio of high- to low-excitation mid-IR emission lines on the one hand, and the strength of the 7.7 μm PAH feature on the other hand. 2. At least half of the sources probably have simultaneously an active nucleus and starburst activity in a 1-2 kpc diameter circumnuclear disk/ring. 3. The mid-IR emitting regions are highly obscured [Av(screen) ~ 5-50 or Av(mixed) ~ 50-1000]. In a model where star-forming regions and dense molecular clouds are fully mixed, the ISO-derived, V-band dust extinctions approach the dust column densities inferred from CO millimeter measurements. After correction for these extinctions, we estimate that the star-forming regions in ultraluminous infrared galaxies have ages between 107 and 108 yr, similar to but somewhat larger than those found in lower luminosity starburst galaxies. 4. In the sample we have studied there is no obvious trend for the AGN component to dominate in the most compact, and thus most advanced mergers. Instead, at any given time during the merger evolution, the time-dependent compression of the circumnuclear interstellar gas, the accretion rate onto the central black hole, and the associated radiation efficiency may determine whether star formation or AGN activity dominates the luminosity of the system.

1,227 citations

Journal ArticleDOI
TL;DR: The Spectroscopic Imaging Survey in the near-infrared (near-IR) with SINFONI (SINS) of high-redshift galaxies is presented in this article.
Abstract: We present the Spectroscopic Imaging survey in the near-infrared (near-IR) with SINFONI (SINS) of high-redshift galaxies. With 80 objects observed and 63 detected in at least one rest-frame optical nebular emission line, mainly Hα, SINS represents the largest survey of spatially resolved gas kinematics, morphologies, and physical properties of star-forming galaxies at z ~ 1-3. We describe the selection of the targets, the observations, and the data reduction. We then focus on the "SINS Hα sample," consisting of 62 rest-UV/optically selected sources at 1.3 < z < 2.6 for which we targeted primarily the Hα and [N II] emission lines. Only ≈30% of this sample had previous near-IR spectroscopic observations. The galaxies were drawn from various imaging surveys with different photometric criteria; as a whole, the SINS Hα sample covers a reasonable representation of massive M_* ≳ 10^(10) M_☉ star-forming galaxies at z ≈ 1.5-2.5, with some bias toward bluer systems compared to pure K-selected samples due to the requirement of secure optical redshift. The sample spans 2 orders of magnitude in stellar mass and in absolute and specific star formation rates, with median values ≈3 × 10^(10) M_☉, ≈70 M_☉ yr^(–1), and ≈3 Gyr^(–1). The ionized gas distribution and kinematics are spatially resolved on scales ranging from ≈1.5 kpc for adaptive optics assisted observations to typically ≈4-5 kpc for seeing-limited data. The Hα morphologies tend to be irregular and/or clumpy. About one-third of the SINS Hα sample galaxies are rotation-dominated yet turbulent disks, another one-third comprises compact and velocity dispersion-dominated objects, and the remaining galaxies are clear interacting/merging systems; the fraction of rotation-dominated systems increases among the more massive part of the sample. The Hα luminosities and equivalent widths suggest on average roughly twice higher dust attenuation toward the H II regions relative to the bulk of the stars, and comparable current and past-averaged star formation rates.

1,219 citations

Journal ArticleDOI
TL;DR: In this article, deep far-IR observations obtained with Herschel and examined the 3-500um SEDs of galaxies at 0 3x10^10 Lsun kpc^-2 and a high specific SFR (i.e., SBs).
Abstract: We present the deepest far-IR observations obtained with Herschel and examine the 3-500um SEDs of galaxies at 0 3x10^10 Lsun kpc^-2) and a high specific SFR (i.e., SBs). The rest-frame, UV-2700A size of these distant SBs is typically half that of MS galaxies, supporting the correlation between star formation density and SB activity that is measured for the local sample. Locally, (U)LIRGs are systematically in the SB mode, whereas most distant (U)LIRGs form stars in the "normal" MS mode. This confusion between two modes of star formation is the cause of the so-called "mid-IR excess" population of galaxies found at z>1.5 by previous studies. MS galaxies have strong PAH emission line features, a broad far-IR bump resulting from a combination of dust temperatures (Tdust~15-50 K), and an effective Tdust~31 K, as derived from the peak wavelength of their IR SED. Galaxies in the SB regime instead exhibit weak PAH EW and a sharper far-IR bump with an effective Tdust~40 K. Finally, we present evidence that the mid-to-far IR emission of X-ray AGNs is predominantly produced by star formation and that candidate dusty AGNs with a power-law emission in the mid-IR systematically occur in compact, dusty SBs. After correcting for the effect of SBs on IR8, we identify new candidates for extremely obscured AGNs.

1,138 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors examined the properties of the host galaxies of 22 623 narrow-line active galactic nuclei (AGN) with 0.02 < z < 0.3 selected from a complete sample of 122 808 galaxies from the Sloan Digital Sky Survey.
Abstract: We examine the properties of the host galaxies of 22 623 narrow-line active galactic nuclei (AGN) with 0.02 < z < 0.3 selected from a complete sample of 122 808 galaxies from the Sloan Digital Sky Survey. We focus on the luminosity of the [O III] λ5007 emission line as a tracer of the strength of activity in the nucleus. We study how AGN host properties compare with those of normal galaxies and how they depend on L[O III]. We find that AGN of all luminosities reside almost exclusively in massive galaxies and have distributions of sizes, stellar surface mass densities and concentrations that are similar to those of ordinary early-type galaxies in our sample. The host galaxies of low-luminosity AGN have stellar populations similar to normal early types. The hosts of high-luminosity AGN have much younger mean stellar ages. The young stars are not preferentially located near the nucleus of the galaxy, but are spread out over scales of at least several kiloparsecs. A significant fraction of high-luminosity AGN have strong Hδ absorption-line equivalent widths, indicating that they experienced a burst of star formation in the recent past. We have also examined the stellar populations of the host galaxies of a sample of broad-line AGN. We conclude that there is no significant difference in stellar content between type 2 Seyfert hosts and quasars (QSOs) with the same [O III] luminosity and redshift. This establishes that a young stellar population is a general property of AGN with high [O III] luminosities.

3,781 citations

Journal ArticleDOI
TL;DR: Herschel was launched on 14 May 2009, and is now an operational ESA space observatory o ering unprecedented observational capabilities in the far-infrared and sub-millimetre spectral range 55 671 m.
Abstract: Herschel was launched on 14 May 2009, and is now an operational ESA space observatory o ering unprecedented observational capabilities in the far-infrared and submillimetre spectral range 55 671 m. Herschel carries a 3.5 metre diameter passively cooled Cassegrain telescope, which is the largest of its kind and utilises a novel silicon carbide technology. The science payload comprises three instruments: two direct detection cameras/medium resolution spectrometers, PACS and SPIRE, and a very high-resolution heterodyne spectrometer, HIFI, whose focal plane units are housed inside a superfluid helium cryostat. Herschel is an observatory facility operated in partnership among ESA, the instrument consortia, and NASA. The mission lifetime is determined by the cryostat hold time. Nominally approximately 20,000 hours will be available for astronomy, 32% is guaranteed time and the remainder is open to the worldwide general astronomical community through a standard competitive proposal procedure.

3,359 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the range of complementary techniques and theoretical tools that allow astronomers to map the cosmic history of star formation, heavy element production, and reionization of the Universe from the cosmic "dark ages" to the present epoch.
Abstract: Over the past two decades, an avalanche of data from multiwavelength imaging and spectroscopic surveys has revolutionized our view of galaxy formation and evolution. Here we review the range of complementary techniques and theoretical tools that allow astronomers to map the cosmic history of star formation, heavy element production, and reionization of the Universe from the cosmic "dark ages" to the present epoch. A consistent picture is emerging, whereby the star-formation rate density peaked approximately 3.5 Gyr after the Big Bang, at z~1.9, and declined exponentially at later times, with an e-folding timescale of 3.9 Gyr. Half of the stellar mass observed today was formed before a redshift z = 1.3. About 25% formed before the peak of the cosmic star-formation rate density, and another 25% formed after z = 0.7. Less than ~1% of today's stars formed during the epoch of reionization. Under the assumption of a universal initial mass function, the global stellar mass density inferred at any epoch matches reasonably well the time integral of all the preceding star-formation activity. The comoving rates of star formation and central black hole accretion follow a similar rise and fall, offering evidence for co-evolution of black holes and their host galaxies. The rise of the mean metallicity of the Universe to about 0.001 solar by z = 6, one Gyr after the Big Bang, appears to have been accompanied by the production of fewer than ten hydrogen Lyman-continuum photons per baryon, a rather tight budget for cosmological reionization.

3,104 citations

Journal ArticleDOI
TL;DR: The Virgo Consortium's EAGLE project as discussed by the authors is a suite of hydrodynamical simulations that follow the formation of galaxies and black holes in representative volumes, where thermal energy is injected into the gas, allowing winds to develop without predetermined speed or mass loading factors.
Abstract: We introduce the Virgo Consortium's EAGLE project, a suite of hydrodynamical simulations that follow the formation of galaxies and black holes in representative volumes. We discuss the limitations of such simulations in light of their finite resolution and poorly constrained subgrid physics, and how these affect their predictive power. One major improvement is our treatment of feedback from massive stars and AGN in which thermal energy is injected into the gas without the need to turn off cooling or hydrodynamical forces, allowing winds to develop without predetermined speed or mass loading factors. Because the feedback efficiencies cannot be predicted from first principles, we calibrate them to the z~0 galaxy stellar mass function and the amplitude of the galaxy-central black hole mass relation, also taking galaxy sizes into account. The observed galaxy mass function is reproduced to ≲0.2 dex over the full mass range, 108

2,828 citations

Journal ArticleDOI
TL;DR: In this paper, supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics, and it has been shown that BHs and bulges coevolve by regulating each other's growth.
Abstract: Supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics. The Hubble Space Telescope revolutionized BH research by advancing the subject from its proof-of-concept phase into quantitative studies of BH demographics. Most influential was the discovery of a tight correlation between BH mass and the velocity dispersion σ of the bulge component of the host galaxy. Together with similar correlations with bulge luminosity and mass, this led to the widespread belief that BHs and bulges coevolve by regulating each other's growth. Conclusions based on one set of correlations from in brightest cluster ellipticals to in the smallest galaxies dominated BH work for more than a decade. New results are now replacing this simple story with a richer and more plausible picture in which BHs correlate differently with different galaxy components. A reasonable aim is to use this progress to refine our understanding of BH-galaxy coevolution. BHs with masses of 105−106M...

2,804 citations