scispace - formally typeset
Search or ask a question
Author

Dietmar Knipp

Other affiliations: PARC, University of Bremen, Forschungszentrum Jülich  ...read more
Bio: Dietmar Knipp is an academic researcher from Geballe Laboratory for Advanced Materials. The author has contributed to research in topics: Thin-film transistor & Solar cell. The author has an hindex of 35, co-authored 179 publications receiving 5007 citations. Previous affiliations of Dietmar Knipp include PARC & University of Bremen.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the structural and transport properties of evaporated pentacene organic thin film transistors (TFTs) are reported, and they show the influence of the deposition conditions with different inorganic dielectrics.
Abstract: The structural and transport properties of evaporated pentacene organic thin film transistors (TFTs) are reported, and they show the influence of the deposition conditions with different inorganic dielectrics. Dielectrics compatible with large area fabrication were explored to facilitate low cost electronics on glass or flexible plastic substrates. X-ray diffraction and atomic force microscopy show a clear correlation between the morphology and the structure of the highly polycrystalline films for all dielectrics investigated. The roughness of the dielectric has a distinct influence on the morphology and the structural properties, whereas the films on smooth thermal oxide are in general highly ordered and independent of the deposition conditions. The ordered films exhibit a “thin film” and a bulk phase, and the bulk phase volume fraction increases with the deposition temperature and the film thickness. Careful control of the deposition conditions gives virtually identical films on thermal oxide and silico...

825 citations

Proceedings ArticleDOI
05 Jul 2006
TL;DR: It is demonstrated theoretically and by means of an experimental system that the high peak-to-average ratio in OFDM can be exploited constructively in visible light communication to intensity modulate LEDs.
Abstract: In this paper wireless communication using white, high brightness LEDs (light emitting diodes) is considered. In particular, the use of OFDM (orthogonal frequency division multiplexing) for intensity modulation is investigated. The high peak-to-average ratio (PAR) in OFDM is usually considered a disadvantage in radio frequency transmission systems due to non-linearities of the power amplifier. It is demonstrated theoretically and by means of an experimental system that the high PAR in OFDM can be exploited constructively in visible light communication to intensity modulate LEDs. It is shown that the theoretical and the experimental results match very closely, and that it is possible to cover a distance of up to one meter using a single LED.

353 citations

Journal ArticleDOI
TL;DR: In this article, a density of state model for the transport properties of polycrystalline pentacene field effect transistors is presented, and the effect of different localized trap distributions on the current-voltage characteristics of such devices is investigated.
Abstract: We present a density of state model for the transport properties of pentacene field effect transistors. Using a one-dimensional transistor model we study the effect of different localized trap distributions on the current-voltage characteristics of such devices. We find that a distributed trap model with a steep exponential band tail of donors and a shallower exponential tail of acceptors inside the band gap can describe consistently our experimental data obtained from bottom-gate polycrystalline pentacene transistors for different gate dielectrics and under various external conditions.

268 citations

Journal ArticleDOI
TL;DR: In this article, temperature-dependent measurements of thin-film transistors were performed to gain insight in the electronic transport of polycrystalline pentacene, and the influence of the dielectric roughness and the deposition temperature of the thermally evaporated pentaene films were studied.
Abstract: Temperature-dependent measurements of thin-film transistors were performed to gain insight in the electronic transport of polycrystalline pentacene. Devices were fabricated with plasma-enhanced chemical vapor deposited silicon nitride gate dielectrics. The influence of the dielectric roughness and the deposition temperature of the thermally evaporated pentacene films were studied. Although films on rougher gate dielectrics and films prepared at low deposition temperatures exhibit similar grain size, the electronic properties are different. Increasing the dielectric roughness reduces the free carrier mobility, while low substrate temperature leads to more and deeper hole traps.

234 citations

Journal ArticleDOI
TL;DR: The influence of nano textured front contacts on the optical wave propagation within microcrystalline thin-film silicon solar cell was investigated and the design of the structures were optimized to achieve higher short circuit currents and quantum efficiencies.
Abstract: The influence of nano textured front contacts on the optical wave propagation within microcrystalline thin-film silicon solar cell was investigated. Periodic triangular gratings were integrated in solar cells and the influence of the profile dimensions on the quantum efficiency and the short circuit current was studied. A Finite Difference Time Domain approach was used to rigorously solve the Maxwell's equations in two dimensions. By studying the influence of the period and height of the triangular profile, the design of the structures were optimized to achieve higher short circuit currents and quantum efficiencies. Enhancement of the short circuit current in the blue part of the spectrum is achieved for small triangular periods (P<200 nm), whereas the short circuit current in the red and infrared part of the spectrum is increased for triangular periods (P = 900nm) comparable to the optical wavelength. The influence of the surface texture on the solar cell performance will be discussed.

184 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Electronic Coupling in Oligoacene Derivatives: Factors Influencing Charge Mobility, and the Energy-Splitting-in-Dimer Method 3.1.
Abstract: 2.2. Materials 929 2.3. Factors Influencing Charge Mobility 931 2.3.1. Molecular Packing 931 2.3.2. Disorder 932 2.3.3. Temperature 933 2.3.4. Electric Field 934 2.3.5. Impurities 934 2.3.6. Pressure 934 2.3.7. Charge-Carrier Density 934 2.3.8. Size/molecular Weight 935 3. The Charge-Transport Parameters 935 3.1. Electronic Coupling 936 3.1.1. The Energy-Splitting-in-Dimer Method 936 3.1.2. The Orthogonality Issue 937 3.1.3. Impact of the Site Energy 937 3.1.4. Electronic Coupling in Oligoacene Derivatives 938

3,635 citations

Journal ArticleDOI
TL;DR: New approaches to add functionality were developed to improve the processability of these materials in solution, allowing the synthesis of acenes larger than pentacene, which have hitherto been largely unavailable and poorly studied.
Abstract: Acenes have long been the subject of intense study because of the unique electronic properties associated with their pi-bond topology. Recent reports of impressive semiconductor properties of larger homologues have reinvigorated research in this field, leading to new methods for their synthesis, functionalization, and purification, as well as for fabricating organic electronic components. Studies performed on high-purity acene single crystals revealed their intrinsic electronic properties and provide useful benchmarks for thin film device research. New approaches to add functionality were developed to improve the processability of these materials in solution. These new functionalization strategies have recently allowed the synthesis of acenes larger than pentacene, which have hitherto been largely unavailable and poorly studied, as well as investigation of their associated structure/property relationships.

1,741 citations

PatentDOI
06 Apr 2012-Science
TL;DR: In this article, the authors present stretchable and printable semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed, or otherwise deformed.
Abstract: The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

1,673 citations