scispace - formally typeset
Search or ask a question
Author

Dietrich Hesse

Bio: Dietrich Hesse is an academic researcher from Max Planck Society. The author has contributed to research in topics: Ferroelectricity & Thin film. The author has an hindex of 60, co-authored 380 publications receiving 14352 citations. Previous affiliations of Dietrich Hesse include South China Normal University & University of Cambridge.


Papers
More filters
Journal ArticleDOI
TL;DR: This letter reports, for the first time, on ultra-long single-crystal ZnAl2O4 spinel nanotubes fabricated through a spinel-forming interfacial solid-state reaction of core-shell ZnO–Al 2O3 nanowires involving the Kirkendall effect.
Abstract: There is a deep interest in methods to fabricate hollow nanocrystals for potential application as high-efficiency catalysts or drug-delivery agents. Tubular one-dimensional nanocrystals have been prepared for a wide variety of materials, including semiconductors1,2, metals3,4, ferroelectrics5,6 and magnetite7. They can be produced by rolling up layered materials or via an axial growth in a rolled-up form8,9,10, coating pores in templates11 or by eliminating the core of a core-shell nanowire1,7. The Kirkendall effect, a classical phenomenon in metallurgy12, was recently applied to explain the formation of hollow spherical nanocrystals13,14,15,16,17. Although the experimental demonstration and theoretical treatment mainly concern binary compounds and planar interfaces or nanoscale spherical interfaces, the fabrication route provided by the Kirkendall effect should be generic, and should also work for high-aspect-ratio hollow cylinders (that is, nanotubes) or even more complex superstructures. In this letter, we report, for the first time, on ultra-long single-crystal ZnAl2O4 spinel nanotubes (total diameter: ∼40 nm, wall thickness: ∼10 nm) fabricated through a spinel-forming interfacial solid-state reaction of core-shell ZnO–Al2O3 nanowires involving the Kirkendall effect. Our results simultaneously represent an extension of applying the Kirkendall effect in fabricating hollow nano-objects from zero-dimensional to multidimensional, and from binary to ternary systems.

685 citations

Journal ArticleDOI
14 Jun 2002-Science
TL;DR: Epitaxially twinned a axis–oriented La-substituted Bi4Ti3O12 (BLT) thin films whose spontaneous polarization is entirely along the film normal were grown by pulsed laser deposition on yttria-stabilized zirconia-buffered Si(100) substrates using SrRuO3 as bottom electrodes.
Abstract: The use of bismuth-layered perovskite films for planar-type nonvolatile ferroelectric random-access memories requires films with spontaneous polarization normal to the plane of growth. Epitaxially twinned a axis–oriented La-substituted Bi4Ti3O12 (BLT) thin films whose spontaneous polarization is entirely along the film normal were grown by pulsed laser deposition on yttria-stabilized zirconia-buffered Si(100) substrates using SrRuO3 as bottom electrodes. Even though the (118) orientation competes with the (100) orientation, epitaxial films with almost pure (100) orientation were grown using very thin, strained SrRuO3 electrode layers and kinetic growth conditions, including high growth rates and high oxygen background pressures to facilitate oxygen incorporation into the growing film. Films with the a-axis orientation and having their polarization entirely along the direction normal to the film plane can achieve a remanent polarization of 32 microcoulombs per square centimeter.

503 citations

Journal ArticleDOI
TL;DR: In this paper, the anomalous photovoltaic (PV) effect in BiFeO3 (BFO) thin films, which resulted in open circuit voltages considerably larger than the band gap of the material, has generated a revival of the entire field of photoferroelectrics.
Abstract: Recently, the anomalous photovoltaic (PV) effect in BiFeO3 (BFO) thin films, which resulted in open circuit voltages (Voc) considerably larger than the band gap of the material, has generated a revival of the entire field of photoferroelectrics. Here, via temperature-dependent PV studies, we prove that the bulk photovoltaic (BPV) effect, which has been studied in the past for many non-centrosymmetric materials, is at the origin of the anomalous PV effect in BFO films. Moreover, we show that irrespective of the measurement geometry, Voc as high as 50 V can be achieved by controlling the conductivity of domain walls (DW). We also show that photoconductivity of the DW is markedly higher than in the bulk of BFO.

439 citations

Journal ArticleDOI
TL;DR: Using the negative spherical-aberration imaging technique in an aberration-corrected transmission electron microscope, a large difference in atomic details between charged and uncharged domain walls is reported.
Abstract: Ferroelectrics are materials exhibiting spontaneous electric polarization due to dipoles formed by displacements of charged ions inside the crystal unit cell. Their exceptional properties are exploited in a variety of microelectronic applications. As ferroelectricity is strongly influenced by surfaces, interfaces and domain boundaries, there is great interest in exploring how the local atomic structure affects the electric properties. Here, using the negative spherical-aberration imaging technique in an aberration-corrected transmission electron microscope, we investigate the cation-oxygen dipoles near 180 degrees domain walls in epitaxial PbZr(0.2)Ti(0.8)O(3) thin films on the atomic scale. The width and dipole distortion across a transversal wall and a longitudinal wall are measured, and on this basis the local polarization is calculated. For the first time, a large difference in atomic details between charged and uncharged domain walls is reported.

438 citations

Journal ArticleDOI
TL;DR: It is shown that owing to the coupling between magnetization and ferro electric polarization at the interface between the electrode and barrier of a multiferroic tunnel junction, the spin polarization of the tunnelling electrons can be reversibly and remanently inverted by switching the ferroelectric polarization ofThe barrier.
Abstract: Spin-polarized transport in ferromagnetic tunnel junctions, characterized by tunnel magnetoresistance, has already been proven to have great potential for application in the field of spintronics and in magnetic random access memories. Until recently, in such a junction the insulating barrier played only a passive role, namely to facilitate electron tunnelling between the ferromagnetic electrodes. However, new possibilities emerged when ferroelectric materials were used for the insulating barrier, as these possess a permanent dielectric polarization switchable between two stable states. Adding to the two different magnetization alignments of the electrode, four non-volatile states are therefore possible in such multiferroic tunnel junctions. Here, we show that owing to the coupling between magnetization and ferroelectric polarization at the interface between the electrode and barrier of a multiferroic tunnel junction, the spin polarization of the tunnelling electrons can be reversibly and remanently inverted by switching the ferroelectric polarization of the barrier. Selecting the spin direction of the tunnelling electrons by short electric pulses in the nanosecond range rather than by an applied magnetic field enables new possibilities for spin control in spintronic devices.

409 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Hollow micro-/nanostructures are of great interest in many current and emerging areas of technology as discussed by the authors, and a comprehensive overview of synthetic strategies for hollow structures is presented.
Abstract: Hollow micro-/nanostructures are of great interest in many current and emerging areas of technology. Perhaps the best-known example of the former is the use of fly-ash hollow particles generated from coal power plants as partial replacement for Portland cement, to produce concrete with enhanced strength and durability. This review is devoted to the progress made in the last decade in synthesis and applications of hollow micro-/nanostructures. We present a comprehensive overview of synthetic strategies for hollow structures. These strategies are broadly categorized into four themes, which include well-established approaches, such as conventional hard-templating and soft-templating methods, as well as newly emerging methods based on sacrificial templating and template-free synthesis. Success in each has inspired multiple variations that continue to drive the rapid evolution of the field. The Review therefore focuses on the fundamentals of each process, pointing out advantages and disadvantages where appropriate. Strategies for generating more complex hollow structures, such as rattle-type and nonspherical hollow structures, are also discussed. Applications of hollow structures in lithium batteries, catalysis and sensing, and biomedical applications are reviewed.

2,767 citations

01 Sep 1955
TL;DR: In this paper, the authors restrict their attention to the ferrites and a few other closely related materials, which are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present.
Abstract: In this chapter, we will restrict our attention to the ferrites and a few other closely related materials. The great interest in ferrites stems from their unique combination of a spontaneous magnetization and a high electrical resistivity. The observed magnetization results from the difference in the magnetizations of two non-equivalent sub-lattices of the magnetic ions in the crystal structure. Materials of this type should strictly be designated as “ferrimagnetic” and in some respects are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present. We shall not adhere to this special nomenclature except to emphasize effects, which are due to the existence of the sub-lattices.

2,659 citations

Journal ArticleDOI
16 Feb 2007-Science
TL;DR: Electroelectric arrays of lead zirconate titanate have been reported on Pt nanowire interconnects and nanorings with 5-nanometer diameters and electron emission from ferroelectrics yields cheap, high-power microwave devices and miniature x-ray and neutron sources.
Abstract: Long viewed as a topic in classical physics, ferroelectricity can be described by a quantum mechanical ab initio theory. Thin-film nanoscale device structures integrated onto Si chips have made inroads into the semiconductor industry. Recent prototype applications include ultrafast switching, cheap room-temperature magnetic-field detectors, piezoelectric nanotubes for microfluidic systems, electrocaloric coolers for computers, phased-array radar, and three-dimensional trenched capacitors for dynamic random access memories. Terabit-per-square-inch ferroelectric arrays of lead zirconate titanate have been reported on Pt nanowire interconnects and nanorings with 5-nanometer diameters. Finally, electron emission from ferroelectrics yields cheap, high-power microwave devices and miniature x-ray and neutron sources.

2,495 citations

01 Jan 2011

2,117 citations