scispace - formally typeset
Search or ask a question
Author

Dietrich Lemke

Other affiliations: University of Arizona
Bio: Dietrich Lemke is an academic researcher from Max Planck Society. The author has contributed to research in topics: Galaxy & Star formation. The author has an hindex of 39, co-authored 229 publications receiving 8095 citations. Previous affiliations of Dietrich Lemke include University of Arizona.


Papers
More filters
Journal ArticleDOI
TL;DR: The Photodetector Array Camera and Spectrometer (PACS) as discussed by the authors is one of the three science instruments on ESA's far infrared and sub-mil- limetre observatory.
Abstract: The Photodetector Array Camera and Spectrometer (PACS) is one of the three science instruments on ESA's far infrared and submil- limetre observatory. It employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16 × 25 pixels, each, and two filled silicon bolometer arrays with 16 × 32 and 32 × 64 pixels, respectively, to perform integral-field spectroscopy and imaging photom- etry in the 60−210 μm wavelength regime. In photometry mode, it simultaneously images two bands, 60−85 μ mo r 85−125 μ ma nd 125−210 μm, over a field of view of ∼1.75 � × 3.5 � , with close to Nyquist beam sampling in each band. In spectroscopy mode, it images afi eld of 47 �� × 47 �� , resolved into 5 × 5 pixels, with an instantaneous spectral coverage of ∼ 1500 km s −1 and a spectral resolution of ∼175 km s −1 . We summarise the design of the instrument, describe observing modes, calibration, and data analysis methods, and present our current assessment of the in-orbit performance of the instrument based on the performance verification tests. PACS is fully operational, and the achieved performance is close to or better than the pre-launch predictions.

2,645 citations

Journal ArticleDOI
TL;DR: In this article, infrared to millimetre spectral energy distributions have been obtained for 41 bright ultra-luminous infrared galaxies with ISOPHOT between 10 and 200 micron and supplemented for 16 sources with SCUBA at 450 and 850 micron, and with SEST at 1.3 mm.
Abstract: Infrared to millimetre spectral energy distributions have been obtained for 41 bright ultra-luminous infrared galaxies. The observations were carried out with ISOPHOT between 10 and 200 micron and supplemented for 16 sources with SCUBA at 450 and 850 micron and with SEST at 1.3 mm. In addition, seven sources were observed at 1.2 and 2.2 $\mu$m with the 2.2 m telescope on Calar Alto. These new SEDs represent the most complete set of infrared photometric templates obtained so far on ULIRGs in the local universe.

196 citations

Journal ArticleDOI
TL;DR: The European Large Area ISO Survey (ELAIS) as mentioned in this paper was the largest single Open Time project conducted by ISO, mapping an area of 12deg^2 at 15μm and at 90μm with ISOPHOT.
Abstract: We describe the European Large Area ISO Survey (ELAIS). ELAIS was the largest single Open Time project conducted by ISO, mapping an area of 12deg^2 at 15μm with ISOCAM and at 90μm with ISOPHOT. Secondary surveys in other ISO bands were undertaken by the ELAIS team within the fields of the primary survey, with 6deg^2 being covered at 6.7μm and 1deg^2 at 175μm. This paper discusses the goals of the project and the techniques employed in its construction, as well as presenting details of the observations carried out, the data from which are now in the public domain. We outline the ELAIS `preliminary analysis' which led to the detection of over 1000 sources from the 15 and 90-μm surveys (the majority selected at 15μm with a flux limit of ~3mJy), to be fed into a ground-based follow-up campaign, as well as a programme of photometric observations of detected sources using both ISOCAM and ISOPHOT. We detail how the ELAIS survey complements other ISO surveys in terms of depth and areal coverage, and show that the extensive multi-wavelength coverage of the ELAIS fields resulting from our concerted and on-going follow-up programme has made these regions amongst the best studied areas of their size in the entire sky, and, therefore, natural targets for future surveys. This paper accompanies the release of extremely reliable subsets of the `preliminary analysis' products. Subsequent papers in this series will give further details of our data reduction techniques, reliability and completeness estimates and present the 15- and 90-μm number counts from the `preliminary analysis', while a further series of papers will discuss in detail the results from the ELAIS `final analysis', as well as from the follow-up programme.

196 citations

Journal ArticleDOI
TL;DR: In this paper, a complete ISO view of PG quasars containing 64 infrared spectral energy distributions between 5 and 200 mu m was provided, where half of the sample was supplemented by MAMBO and SCUBA (sub-) millimeter data.
Abstract: Mining the ISO data archive we provide the complete ISO view of PG quasars containing 64 infrared spectral energy distributions between 5 and 200 mu m. About half of the sample was supplemented by MAMBO and SCUBA (sub-)millimeter data. Since the PG quasars were selected optically, the high infrared detection rate of more than 80% suggests that every quasar possesses luminous to hyper-luminous dust emission with dust masses comparable to Seyferts and ultra-luminous IR galaxies (ULIRGs). The gas to-dust mass ratio (of those sources where CO measurements are available in the literature) is consistent with the galactic value providing further evidence for the thermal nature of the IR emission of radio quiet quasars. The SEDs represent templates of unprecedented detail and sensitivity. We suggest that the diversity of the SEDs reflects largely the evolution of the dust distribution, and we propose a classification of the SED shapes as well as an evolutionary scheme in which this variety can be understood. During the evolution the surrounding dust redistributes, settling more and more into a torus/disk like configuration, while the SEDs show an initial FIR bump, then an increasing MIR emission and a steeper near- to mid-infrared slope, both of which finally also decrease. Regarding cosmic evolution, our hyper-luminous quasars in the "local" universe at z=l do not show the hyper-luminous (LFIR >? 10(exp 13) L(sub sun)) starburst activity inferred for z=4 quasars detected in several (sub-)millimeter surveys. In view of several caveats this difference should be established further, but it already suggests that in the early dense universe stronger merger events led to more powerful starbursts accompanying the quasar phenomenon, while at later cosmic epochs any coeval starbursts obviously do not reach that high power and are outshone by the AGN. Additional information is included in the original extended abstract.

189 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Herschel was launched on 14 May 2009, and is now an operational ESA space observatory o ering unprecedented observational capabilities in the far-infrared and sub-millimetre spectral range 55 671 m.
Abstract: Herschel was launched on 14 May 2009, and is now an operational ESA space observatory o ering unprecedented observational capabilities in the far-infrared and submillimetre spectral range 55 671 m. Herschel carries a 3.5 metre diameter passively cooled Cassegrain telescope, which is the largest of its kind and utilises a novel silicon carbide technology. The science payload comprises three instruments: two direct detection cameras/medium resolution spectrometers, PACS and SPIRE, and a very high-resolution heterodyne spectrometer, HIFI, whose focal plane units are housed inside a superfluid helium cryostat. Herschel is an observatory facility operated in partnership among ESA, the instrument consortia, and NASA. The mission lifetime is determined by the cryostat hold time. Nominally approximately 20,000 hours will be available for astronomy, 32% is guaranteed time and the remainder is open to the worldwide general astronomical community through a standard competitive proposal procedure.

3,359 citations

Journal ArticleDOI
TL;DR: The Photodetector Array Camera and Spectrometer (PACS) as discussed by the authors is one of the three science instruments on ESA's far infrared and sub-mil- limetre observatory.
Abstract: The Photodetector Array Camera and Spectrometer (PACS) is one of the three science instruments on ESA's far infrared and submil- limetre observatory. It employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16 × 25 pixels, each, and two filled silicon bolometer arrays with 16 × 32 and 32 × 64 pixels, respectively, to perform integral-field spectroscopy and imaging photom- etry in the 60−210 μm wavelength regime. In photometry mode, it simultaneously images two bands, 60−85 μ mo r 85−125 μ ma nd 125−210 μm, over a field of view of ∼1.75 � × 3.5 � , with close to Nyquist beam sampling in each band. In spectroscopy mode, it images afi eld of 47 �� × 47 �� , resolved into 5 × 5 pixels, with an instantaneous spectral coverage of ∼ 1500 km s −1 and a spectral resolution of ∼175 km s −1 . We summarise the design of the instrument, describe observing modes, calibration, and data analysis methods, and present our current assessment of the in-orbit performance of the instrument based on the performance verification tests. PACS is fully operational, and the achieved performance is close to or better than the pre-launch predictions.

2,645 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies.
Abstract: We review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies. Methods of measuring gas contents and star-formation rates are discussed, and updated prescriptions for calculating star-formation rates are provided. We review relations between star formation and gas on scales ranging from entire galaxies to individual molecular clouds.

2,525 citations

Journal ArticleDOI
Matthew Joseph Griffin, Alain Abergel1, A. Abreu, Peter A. R. Ade2  +186 moreInstitutions (27)
TL;DR: The Spectral and Photometric Imaging REceiver (SPIRE) is the Herschel Space Observatory's sub-millimetre camera and spectrometer as discussed by the authors, which is used for image and spectroscopic data acquisition.
Abstract: The Spectral and Photometric Imaging REceiver (SPIRE), is the Herschel Space Observatory`s submillimetre camera and spectrometer It contains a three-band imaging photometer operating at 250, 350 and 500 mu m, and an imaging Fourier-transform spectrometer (FTS) which covers simultaneously its whole operating range of 194-671 mu m (447-1550 GHz) The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 03 K The photometer has a field of view of 4' x 8', observed simultaneously in the three spectral bands Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired The spectrometer has an approximately circular field of view with a diameter of 26' The spectral resolution can be adjusted between 12 and 25 GHz by changing the stroke length of the FTS scan mirror Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view The SPIRE instrument consists of a cold focal plane unit located inside the Herschel cryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 15-2

2,425 citations

Journal ArticleDOI
TL;DR: In this article, the authors survey the observed properties of interstellar dust grains: the wavelength-dependent extinction of starlight, including absorption features, from UV to infrared; optical luminescence; and optical luminance.
Abstract: ▪ Abstract This review surveys the observed properties of interstellar dust grains: the wavelength-dependent extinction of starlight, including absorption features, from UV to infrared; optical lum...

2,288 citations