scispace - formally typeset
Search or ask a question
Author

Diksha Dhawan

Bio: Diksha Dhawan is an academic researcher from University of Michigan. The author has contributed to research in topics: Quantum computer & Time evolution. The author has an hindex of 1, co-authored 4 publications receiving 4 citations.

Papers
More filters
Posted Content
TL;DR: In this paper, the authors present a hybrid algorithm for molecular chemistry simulations on noisy intermediate-scale quantum (NISQ) devices, where the classical-quantum hybrid algorithm is used to parameterize the sparse, fictitious Hamiltonian in such a way that it recovers the energy of the original molecular system.
Abstract: For noisy intermediate-scale quantum (NISQ) devices only a moderate number of qubits with a limited coherence is available thus enabling only shallow circuits and a few time evolution steps in the currently performed quantum computations. Here, we present how to bypass this challenge in practical molecular chemistry simulations on NISQ devices by employing a classical-quantum hybrid algorithm allowing us to produce a sparse Hamiltonian which contains only $\mathcal{O}(n^2)$ terms in a Gaussian orbital basis when compared to the $\mathcal{O}(n^4)$ terms of a standard Hamiltonian, where $n$ is the number of orbitals in the system. Classical part of this hybrid entails parameterization of the sparse, fictitious Hamiltonian in such a way that it recovers the self-energy of the original molecular system. Quantum machine then uses this fictitious Hamiltonian to calculate the self-energy of the system. We show that the developed hybrid algorithm yields very good total energies for small molecular test cases while reducing the depth of the quantum circuit by at least an order of magnitude when compared with simulations involving a full Hamiltonian.

5 citations

Journal ArticleDOI
TL;DR: This work explores the possibility of mapping the molecular problem onto a sparse Hubbard-like Hamiltonian, which allows a Green’s-function-based approach to electronic structure via a hybrid quantum-classical algorithm.
Abstract: Quantum chemistry has been viewed as one of the potential early applications of quantum computing. Two techniques have been proposed for electronic structure calculations: (i) the variational quantum eigensolver and (ii) the phase-estimation algorithm. In both cases, the complexity of the problem increases for basis sets where either the Hamiltonian is not sparse, or it is sparse, but many orbitals are required to accurately describe the molecule of interest. In this work, we explore the possibility of mapping the molecular problem onto a sparse Hubbard-like Hamiltonian, which allows a Green's-function-based approach to electronic structure via a hybrid quantum-classical algorithm. We illustrate the time-evolution aspect of this methodology with a simple four-site hydrogen ring.

1 citations

Journal ArticleDOI
TL;DR: In this article, the authors explore the possibility of mapping the molecular problem onto a sparse Hubbard-like Hamiltonian, which allows a Green's-function-based approach to electronic structure via a hybrid quantum-classical algorithm.
Abstract: Quantum chemistry has been viewed as one of the potential early applications of quantum computing. Two techniques have been proposed for electronic structure calculations: (1) the variational quantum eigensolver and (2) the phase-estimation algorithm. In both cases, the complexity of the problem increases for basis sets where either the Hamiltonian is not sparse, or it is sparse, but many orbitals are required to accurately describe the molecule of interest. In this work, we explore the possibility of mapping the molecular problem onto a sparse Hubbard-like Hamiltonian, which allows a Green’s-function-based approach to electronic structure via a hybrid quantum-classical algorithm. We illustrate the time-evolution aspect of this methodology with a simple four-site hydrogen ring.

1 citations

Journal ArticleDOI
TL;DR: In this paper, a dynamical self-energy mapping (DSEM) algorithm is proposed to find a sparse Hamiltonian representation for molecular problems, which can reduce the depth of the quantum circuit by an order of magnitude when compared with simulations involving a full Hamiltonian.
Abstract: We present a two-step procedure called the dynamical self-energy mapping (DSEM) that allows us to find a sparse Hamiltonian representation for molecular problems. In the first part of this procedure, the approximate self-energy of a molecular system is evaluated using a low-level method and subsequently a sparse Hamiltonian is found that best recovers this low-level dynamic self-energy. In the second step, such a sparse Hamiltonian is used by a high-level method that delivers a highly accurate dynamical part of the self-energy that is employed in later calculations. The tests conducted on small molecular problems show that the sparse Hamiltonian parameterizations lead to very good total energies. DSEM has the potential to be used as a classical-quantum hybrid algorithm for quantum computing where the sparse Hamiltonian containing only O(n2) terms on a Gaussian orbital basis, where n is the number of orbitals in the system, could reduce the depth of the quantum circuit by at least an order of magnitude when compared with simulations involving a full Hamiltonian.

Cited by
More filters
Posted Content
Mario Motta1, Julia E. Rice1
TL;DR: A self-contained introduction to emerging algorithms for the simulation of Hamiltonian dynamics and eigenstates, with emphasis on their applications to the electronic structure in molecular systems is provided in this paper.
Abstract: Digital quantum computers provide a computational framework for solving the Schrodinger equation for a variety of many-particle systems. Quantum computing algorithms for the quantum simulation of these systems have recently witnessed remarkable growth, notwithstanding the limitations of existing quantum hardware, especially as a tool for electronic structure computations in molecules. In this review, we provide a self-contained introduction to emerging algorithms for the simulation of Hamiltonian dynamics and eigenstates, with emphasis on their applications to the electronic structure in molecular systems. Theoretical foundations and implementation details of the method are discussed, and their strengths, limitations, and recent advances are presented.

19 citations

Journal ArticleDOI
TL;DR: The quantum chemistry package Fermi.jl is introduced, which contains the first implementations of post-Hartree-Fock methods written in Julia, which is a modular package designed to maximize code reusability by relying on general functions with specialized methods for particular cases.
Abstract: Approximating molecular wave functions involves heavy numerical effort; therefore, codes for such tasks are written completely or partially in efficient languages such as C, C++, and Fortran. While these tools are dominant throughout quantum chemistry packages, the efficient development of new methods is often hindered by the complexity associated with code development. In order to ameliorate this scenario, some software packages take a dual approach where a simpler, higher-level language, such as Python, substitutes the traditional ones wherever performance is not critical. Julia is a novel, dynamically typed, programming language that aims to solve this two-language problem. It gained attention because of its modern and intuitive design, while still being highly optimized to compete with "low-level" languages. Recently, some chemistry-related projects have emerged exploring the capabilities of Julia. Herein, we introduce the quantum chemistry package Fermi.jl, which contains the first implementations of post-Hartree-Fock methods written in Julia. Its design makes use of many Julia core features, including multiple dispatch, metaprogramming, and interactive usage. Fermi.jl is a modular package, where new methods and implementations can be easily added to the existing code. Furthermore, it is designed to maximize code reusability by relying on general functions with specialized methods for particular cases. The feasibility of the project is explored through evaluating the performance of popular ab initio methods. It is our hope that this project motivates the usage of Julia within the community and brings new contributions into Fermi.jl.

9 citations

Journal Article
TL;DR: OpenFermion as mentioned in this paper is an open-source software library written largely in Python under an Apache 2.0 license, aimed at enabling the simulation of fermionic models and quantum chemistry problems on quantum hardware.
Abstract: Quantum simulation of chemistry and materials is predicted to be an important application for both near-term and fault-tolerant quantum devices. However, at present, developing and studying algorithms for these problems can be difficult due to the prohibitive amount of domain knowledge required in both the area of chemistry and quantum algorithms. To help bridge this gap and open the field to more researchers, we have developed the OpenFermion software package (this http URL). OpenFermion is an open-source software library written largely in Python under an Apache 2.0 license, aimed at enabling the simulation of fermionic models and quantum chemistry problems on quantum hardware. Beginning with an interface to common electronic structure packages, it simplifies the translation between a molecular specification and a quantum circuit for solving or studying the electronic structure problem on a quantum computer, minimizing the amount of domain expertise required to enter the field. The package is designed to be extensible and robust, maintaining high software standards in documentation and testing. This release paper outlines the key motivations behind design choices in OpenFermion and discusses some basic OpenFermion functionality which we believe will aid the community in the development of better quantum algorithms and tools for this exciting area of research.

5 citations

Posted Content
TL;DR: In this paper, a variational quantum eigensolver (VQE) is used to compute the Green's function of ab initio dihydrogen and lithium hydride molecules.
Abstract: Recent practical approaches for the use of current generation noisy quantum devices in the simulation of quantum many-body problems have been dominated by the use of a variational quantum eigensolver (VQE). These coupled quantum-classical algorithms leverage the ability to perform many repeated measurements to avoid the currently prohibitive gate depths often required for exact quantum algorithms, with the restriction of a parameterized circuit to describe the states of interest. In this work, we show how the calculation of zero-temperature dynamic correlation functions defining the linear response characteristics of quantum systems can also be recast into a modified VQE algorithm, which can be incorporated into the current variational quantum infrastructure. This allows for these important physical expectation values describing the dynamics of the system to be directly converged on the frequency axis, and they approach exactness over all frequencies as the flexibility of the parameterization increases. The frequency resolution hence does not explicitly scale with gate depth, which is approximately twice as deep as a ground state VQE. We apply the method to compute the single-particle Green's function of ab initio dihydrogen and lithium hydride molecules, and demonstrate the use of a practical active space embedding approach to extend to larger systems. While currently limited by the fidelity of two-qubit gates, whose number is increased compared to the ground state algorithm on current devices, we believe the approach shows potential for the extraction of frequency dynamics of correlated systems on near-term quantum processors.

1 citations