scispace - formally typeset
Search or ask a question
Author

Dillan Cellier

Bio: Dillan Cellier is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Working memory & Intraparietal sulcus. The author has an hindex of 4, co-authored 5 publications receiving 94 citations. Previous affiliations of Dillan Cellier include United States University & Helen Wills Neuroscience Institute.

Papers
More filters
Journal ArticleDOI
TL;DR: A retrospective-cue WM paradigm is used to manipulate prioritization and suppression task demands designed to drive theta oscillations in prefrontal cortex and parietal alphascillations in the control of internally maintained WM representations to causally establish dissociable roles for prefrontal thetascillations andParietal alpha oscillations.

127 citations

Journal ArticleDOI
TL;DR: In this article, the authors used rhythmic TMS to modulate ongoing beta and gamma frequency neuronal oscillations in frontal and parietal cortex while human participants performed a visual search task that manipulates bottom-up and top-down attention.
Abstract: Beta and gamma frequency neuronal oscillations have been implicated in top-down and bottom-up attention. In this study, we used rhythmic TMS to modulate ongoing beta and gamma frequency neuronal oscillations in frontal and parietal cortex while human participants performed a visual search task that manipulates bottom-up and top-down attention (single feature and conjunction search). Both task conditions will engage bottom-up attention processes, although the conjunction search condition will require more top-down attention. Gamma frequency TMS to superior precentral sulcus (sPCS) slowed saccadic RTs during both task conditions and induced a response bias to the contralateral visual field. In contrary, beta frequency TMS to sPCS and intraparietal sulcus decreased search accuracy only during the conjunction search condition that engaged more top-down attention. Furthermore, beta frequency TMS increased trial errors specifically when the target was in the ipsilateral visual field for the conjunction search condition. These results indicate that beta frequency TMS to sPCS and intraparietal sulcus disrupted top-down attention, whereas gamma frequency TMS to sPCS disrupted bottom-up, stimulus-driven attention processes. These findings provide causal evidence suggesting that beta and gamma oscillations have distinct functional roles for cognition.

40 citations

Journal ArticleDOI
TL;DR: In this paper , the authors present a critical review of iEEG research practices in a didactic framework for newcomers, as well addressing issues encountered by proficient researchers, and suggest potential guidelines for working with the data and answer frequently asked questions based on the most widespread practices.

23 citations

Journal ArticleDOI
TL;DR: Different oscillatory signatures are found that correspond to two different components of hierarchical control: the level of abstraction of a rule and the number of rules in competition, which suggest that distinct neural oscillatory mechanisms underlie different parts of hierarchical cognitive control.
Abstract: Hierarchical cognitive control enables us to execute actions guided by abstract goals. Previous research has suggested that neuronal oscillations at different frequency bands are associated with top-down cognitive control; however, whether distinct neural oscillations have similar or different functions for cognitive control is not well understood. The aim of the current study was to investigate the oscillatory neuronal mechanisms underlying two distinct components of hierarchical cognitive control: the level of abstraction of a rule, and the number of rules that must be maintained (set-size). We collected EEG data in 31 men and women who performed a hierarchical cognitive control task that varied in levels of abstraction and set-size. Results from time-frequency analysis in frontal electrodes showed an increase in theta amplitude for increased set-size, whereas an increase in δ was associated with increased abstraction. Both theta and δ amplitude correlated with behavioral performance in the tasks but in an opposite manner: theta correlated with response time slowing when the number of rules increased, whereas δ correlated with response time when rules became more abstract. Phase-amplitude coupling analysis revealed that δ phase-coupled with β amplitude during conditions with a higher level of abstraction, whereby beta band may potentially represent motor output that was guided by the δ phase. These results suggest that distinct neural oscillatory mechanisms underlie different components of hierarchical cognitive control.SIGNIFICANCE STATEMENT Cognitive control allows us to perform immediate actions while maintaining more abstract, overarching goals in mind and to choose between competing actions. We found distinct oscillatory signatures that correspond to two different components of hierarchical control: the level of abstraction of a rule and the number of rules in competition. An increase in the level of abstraction was associated with δ oscillations, whereas theta oscillations were observed when the number of rules increased. Oscillatory amplitude correlated with behavioral performance in the task. Finally, the expression of β amplitude was coordinated via the phase of δ oscillations, and theta phase-coupled with γ amplitude. These results suggest that distinct neural oscillatory mechanisms underlie different components of hierarchical cognitive control.

22 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the human IPS is a source of top-down biasing signals that modulate task-evoked functional connectivity among task-relevant cortical regions.
Abstract: Past studies have demonstrated that flexible interactions between brain regions support a wide range of goal-directed behaviors. However, the neural mechanisms that underlie adaptive communication between brain regions are not well understood. In this study, we combined theta-burst transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging to investigate the sources of top-down biasing signals that influence task-evoked functional connectivity. Subjects viewed sequences of images of faces and buildings and were required to detect repetitions (2-back vs. 1-back) of the attended stimuli category (faces or buildings). We found that functional connectivity between ventral temporal cortex and the primary visual cortex (VC) increased during processing of task-relevant stimuli, especially during higher memory loads. Furthermore, the strength of functional connectivity was greater for correct trials. Increases in task-evoked functional connectivity strength were correlated with increases in activity in multiple frontal, parietal, and subcortical (caudate and thalamus) regions. Finally, we found that TMS to superior intraparietal sulcus (IPS), but not to primary somatosensory cortex, decreased task-specific modulation in connectivity patterns between the primary VC and the parahippocampal place area. These findings demonstrate that the human IPS is a source of top-down biasing signals that modulate task-evoked functional connectivity among task-relevant cortical regions.

12 citations


Cited by
More filters
Journal Article
TL;DR: It is hypothesized that beta oscillations and/or coupling in the beta-band are expressed more strongly if the maintenance of the status quo is intended or predicted, than if a change is expected.
Abstract: In this review, we consider the potential functional role of beta-band oscillations, which at present is not yet well understood. We discuss evidence from recent studies on top-down mechanisms involved in cognitive processing, on the motor system and on the pathophysiology of movement disorders that suggest a unifying hypothesis: beta-band activity seems related to the maintenance of the current sensorimotor or cognitive state. We hypothesize that beta oscillations and/or coupling in the beta-band are expressed more strongly if the maintenance of the status quo is intended or predicted, than if a change is expected. Moreover, we suggest that pathological enhancement of beta-band activity is likely to result in an abnormal persistence of the status quo and a deterioration of flexible behavioural and cognitive control.

1,837 citations

01 Jan 1998
TL;DR: The lateral intraparietal area (LIP) as mentioned in this paper has been shown to have visual responses to stimuli appearing abruptly at particular retinal locations (their receptive fields) and the visual representation in LIP is sparse, with only the most salient or behaviourally relevant objects being strongly represented.
Abstract: When natural scenes are viewed, a multitude of objects that are stable in their environments are brought in and out of view by eye movements. The posterior parietal cortex is crucial for the analysis of space, visual attention and movement 1 . Neurons in one of its subdivisions, the lateral intraparietal area (LIP), have visual responses to stimuli appearing abruptly at particular retinal locations (their receptive fields)2. We have tested the responses of LIP neurons to stimuli that entered their receptive field by saccades. Neurons had little or no response to stimuli brought into their receptive field by saccades, unless the stimuli were behaviourally significant. We established behavioural significance in two ways: either by making a stable stimulus task-relevant, or by taking advantage of the attentional attraction of an abruptly appearing stimulus. Our results show that under ordinary circumstances the entire visual world is only weakly represented in LIP. The visual representation in LIP is sparse, with only the most salient or behaviourally relevant objects being strongly represented.

1,007 citations

01 May 2009
TL;DR: It is found that attention to a stimulus in their joint receptive field leads to enhanced oscillatory coupling between the two areas, particularly at gamma frequencies, which may optimize the postsynaptic impact of spikes from one area upon the other, improving cross-area communication with attention.
Abstract: Electrical recordings in humans and monkeys show attentional enhancement of evoked responses and gamma synchrony in ventral stream cortical areas. Does this synchrony result from intrinsic activity in visual cortex or from inputs from other structures? Using paired recordings in the frontal eye field (FEF) and area V4, we found that attention to a stimulus in their joint receptive field leads to enhanced oscillatory coupling between the two areas, particularly at gamma frequencies. This coupling appeared to be initiated by FEF and was time-shifted by about 8 to 13 milliseconds across a range of frequencies. Considering the expected conduction and synaptic delays between the areas, this time-shifted coupling at gamma frequencies may optimize the postsynaptic impact of spikes from one area upon the other, improving cross-area communication with attention.

140 citations

Journal ArticleDOI
TL;DR: This review provides an overview of stimulation studies using different approaches to entrain brain oscillations for modulating human memory and argues that these studies demonstrate a causal link betweenbrain oscillations and memory, speaking against an epiphenomenal perspective of brain oscillation.

136 citations

Journal ArticleDOI
TL;DR: A retrospective-cue WM paradigm is used to manipulate prioritization and suppression task demands designed to drive theta oscillations in prefrontal cortex and parietal alphascillations in the control of internally maintained WM representations to causally establish dissociable roles for prefrontal thetascillations andParietal alpha oscillations.

127 citations