scispace - formally typeset
Search or ask a question
Author

Dimitri Basov

Bio: Dimitri Basov is an academic researcher from Columbia University. The author has contributed to research in topics: Plasmon & Polariton. The author has an hindex of 75, co-authored 368 publications receiving 24532 citations. Previous affiliations of Dimitri Basov include McMaster University & Lebedev Physical Institute.


Papers
More filters
Journal ArticleDOI
05 Jul 2012-Nature
TL;DR: Using infrared nano-imaging, it is shown that common graphene/SiO2/Si back-gated structures support propagating surface plasmons and changes both the amplitude and the wavelength are altered by varying the gate voltage.
Abstract: Surface plasmons are collective oscillations of electrons in metals or semiconductors that enable confinement and control of electromagnetic energy at subwavelength scales. Rapid progress in plasmonics has largely relied on advances in device nano-fabrication, whereas less attention has been paid to the tunable properties of plasmonic media. One such medium--graphene--is amenable to convenient tuning of its electronic and optical properties by varying the applied voltage. Here, using infrared nano-imaging, we show that common graphene/SiO(2)/Si back-gated structures support propagating surface plasmons. The wavelength of graphene plasmons is of the order of 200 nanometres at technologically relevant infrared frequencies, and they can propagate several times this distance. We have succeeded in altering both the amplitude and the wavelength of these plasmons by varying the gate voltage. Using plasmon interferometry, we investigated losses in graphene by exploring real-space profiles of plasmon standing waves formed between the tip of our nano-probe and the edges of the samples. Plasmon dissipation quantified through this analysis is linked to the exotic electrodynamics of graphene. Standard plasmonic figures of merit of our tunable graphene devices surpass those of common metal-based structures.

1,849 citations

Journal ArticleDOI
14 Dec 2007-Science
TL;DR: The electronic properties of a prototypical correlated insulator vanadium dioxide in which the metallic state can be induced by increasing temperature is reported, setting the stage for investigations of charge dynamics on the nanoscale in other inhomogeneous correlated electron systems.
Abstract: Electrons in correlated insulators are prevented from conducting by Coulomb repulsion between them. When an insulator-to-metal transition is induced in a correlated insulator by doping or heating, the resulting conducting state can be radically different from that characterized by free electrons in conventional metals. We report on the electronic properties of a prototypical correlated insulator vanadium dioxide in which the metallic state can be induced by increasing temperature. Scanning near-field infrared microscopy allows us to directly image nanoscale metallic puddles that appear at the onset of the insulator-to-metal transition. In combination with far-field infrared spectroscopy, the data reveal the Mott transition with divergent quasi-particle mass in the metallic puddles. The experimental approach used sets the stage for investigations of charge dynamics on the nanoscale in other inhomogeneous correlated electron systems.

1,283 citations

Journal ArticleDOI
07 Mar 2014-Science
TL;DR: The measured dispersion of polaritonic waves was shown to be governed by the crystal thickness according to a scaling law that persists down to a few atomic layers, likely to hold true in other polar van der Waals crystals and may lead to new functionalities.
Abstract: van der Waals heterostructures assembled from atomically thin crystalline layers of diverse two-dimensional solids are emerging as a new paradigm in the physics of materials. We used infrared nanoimaging to study the properties of surface phonon polaritons in a representative van der Waals crystal, hexagonal boron nitride. We launched, detected, and imaged the polaritonic waves in real space and altered their wavelength by varying the number of crystal layers in our specimens. The measured dispersion of polaritonic waves was shown to be governed by the crystal thickness according to a scaling law that persists down to a few atomic layers. Our results are likely to hold true in other polar van der Waals crystals and may lead to new functionalities.

1,006 citations

Journal ArticleDOI
14 Oct 2016-Science
TL;DR: This work discusses polaritons in van der Waals (vdW) materials: layered systems in which individual atomic planes are bonded by weak vdW attraction, thus enabling unparalleled control of polaritonic response at the level of single atomic planes.
Abstract: BACKGROUND Light trapped at the nanoscale, deep below the optical wavelength, exhibits an increase in the associated electric field strength, which results in enhanced light-matter interaction. This leads to strong nonlinearities, large photonic forces, and enhanced emission and absorption probabilities. A practical approach toward nanoscale light trapping and manipulation is offered by interfaces separating media with permittivities of opposite signs. Such interfaces sustain hybrid light-matter modes involving collective oscillations of polarization charges in matter, hence the term polaritons. Surface plasmon polaritons, supported by electrons in metals, constitute a most-studied prominent example. Yet there are many other varieties of polaritons, including those formed by atomic vibrations in polar insulators, excitons in semiconductors, Cooper pairs in superconductors, and spin resonances in (anti)ferromagnets. Together, they span a broad region of the electromagnetic spectrum, ranging from microwave to ultraviolet wavelengths. We discuss polaritons in van der Waals (vdW) materials: layered systems in which individual atomic planes are bonded by weak vdW attraction (see the figure). This class of quantum materials includes graphene and other two-dimensional crystals. In artificial structures assembled from dissimilar vdW atomic layers, polaritons associated with different constituents can interact to produce unique optical effects by design. ADVANCES vdW materials host a full suite of different polaritonic modes with the highest degree of confinement among all known materials. Advanced near-field imaging methods allow the polaritonic waves to be launched and visualized as they travel along vdW layers or through multilayered heterostructures. Spectroscopic and nanoimaging experiments have identified multiple routes toward manipulation of nano-optical phenomena endowed by polaritons. A virtue of polaritons in vdW systems is their electrical tunability. Furthermore, in heterostructures assembled from dissimilar vdW layers, different brands of polaritons interact with each other, thus enabling unparalleled control of polaritonic response at the level of single atomic planes. New optoelectronic device concepts aimed at the detection, harvesting, emission, propagation, and modulation of light are becoming feasible as a result of combined synthesis, nanofabrication, and modeling of vdW systems. The extreme anisotropy of vdW systems leading to opposite signs of the in-plane and out-of-plane permittivities of the same layered crystal enables efficient polaritonic waveguides, which are instrumental for subdiffractional focusing and imaging. In addition to near-field optical probes facilitating nanoimaging, coupling to polaritons can be accomplished via electrical excitation and nonlinear wave mixing. OUTLOOK Potential outcomes of polariton exploration in vdW heterostructures go beyond nano-optical technologies. In particular, images of polaritonic standing and traveling waves contain rich insights into quantum phenomena occurring in the host material supporting polaritons. This line of inquiry into fundamental physics through polaritonic observations constitutes an approach toward optics-based materials research. In particular, the strong spatial confinement exhibited by vdW polaritons involves large optical-field gradients—or equivalently, large momenta—which allows regions of the dispersion relations of electrons, phonons, and other condensed-matter excitations to be accessed beyond what is currently possible with conventional optics. Additionally, polaritons created by short and intense laser pulses add femtosecond resolution to the study of these phenomena. Alongside future advances in the understanding of the physics and interactions of vdW polaritons, solutions to application challenges may be anticipated in areas such as loss compensation, nanoscale lasing, quantum optics, and nanomanipulation. The field of vdW polaritonics is ripe for exploring genuinely unique physical scenarios and exploiting these new phenomena in technology. van der Waals (vdW) materials consist of individual atomic planes bonded by weak vdW attraction. They display nearly all optical phenomena found in solids, including plasmonic oscillations of free electrons characteristic of metals, light emission/lasing and excitons encountered in semiconductors, and intense phonon resonances typical of insulators. These phenomena are embodied in confined light-matter hybrid modes termed polaritons—excitations of polarizable media, which are classified according to the origin of the polarization. The most studied varieties are plasmon, phonon, and exciton polaritons. In vdW materials, polaritons exhibit extraordinary properties that are directly affected by dimensionality and topology, as revealed by state-of-the-art imaging of polaritonic waves. vdW heterostructures provide unprecedented control over the polaritonic response, enabling new quantum phenomena and nanophotonics applications.

790 citations

Journal ArticleDOI
27 Feb 2010-Science
TL;DR: In this paper, the authors demonstrate a form of memory capacitance which interfaces metamaterials with a class of devices known collectively as memory devices, and demonstrate electrically-controlled persistent frequency tuning of a metammaterial, allowing lasting modification of its response using a transient stimulus.
Abstract: The resonant elements that grant metamaterials their unique properties have the fundamental limitation of restricting their useable frequency bandwidth The development of frequency-agile metamaterials has helped to alleviate these bandwidth restrictions by allowing real-time tuning of the metamaterial frequency response We demonstrate electrically-controlled persistent frequency tuning of a metamaterial, allowing lasting modification of its response using a transient stimulus This work demonstrates a form of memory capacitance which interfaces metamaterials with a class of devices known collectively as memory devices

739 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Topological superconductors are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors and are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time reversal symmetry.
Abstract: Topological insulators are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors. They are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time-reversal symmetry. These topological materials have been theoretically predicted and experimentally observed in a variety of systems, including HgTe quantum wells, BiSb alloys, and Bi2Te3 and Bi2Se3 crystals. Theoretical models, materials properties, and experimental results on two-dimensional and three-dimensional topological insulators are reviewed, and both the topological band theory and the topological field theory are discussed. Topological superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. The theory of topological superconductors is reviewed, in close analogy to the theory of topological insulators.

11,092 citations

Journal ArticleDOI
23 Jun 2006-Science
TL;DR: This work shows how electromagnetic fields can be redirected at will and proposes a design strategy that has relevance to exotic lens design and to the cloaking of objects from electromagnetic fields.
Abstract: Using the freedom of design that metamaterials provide, we show how electromagnetic fields can be redirected at will and propose a design strategy. The conserved fields-electric displacement field D, magnetic induction field B, and Poynting vector B-are all displaced in a consistent manner. A simple illustration is given of the cloaking of a proscribed volume of space to exclude completely all electromagnetic fields. Our work has relevance to exotic lens design and to the cloaking of objects from electromagnetic fields.

7,811 citations