scispace - formally typeset
Search or ask a question
Author

Dimitri Karamata

Bio: Dimitri Karamata is an academic researcher from University of Lausanne. The author has contributed to research in topics: Bacillus subtilis & Teichoic acid. The author has an hindex of 33, co-authored 61 publications receiving 7875 citations.
Topics: Bacillus subtilis, Teichoic acid, Operon, Gene, Mutant


Papers
More filters
Journal ArticleDOI
F. Kunst1, Naotake Ogasawara2, Ivan Moszer1, Alessandra M. Albertini3  +151 moreInstitutions (30)
20 Nov 1997-Nature
TL;DR: Bacillus subtilis is the best-characterized member of the Gram-positive bacteria, indicating that bacteriophage infection has played an important evolutionary role in horizontal gene transfer, in particular in the propagation of bacterial pathogenesis.
Abstract: Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-coding genes, 53% are represented once, while a quarter of the genome corresponds to several gene families that have been greatly expanded by gene duplication, the largest family containing 77 putative ATP-binding transport proteins. In addition, a large proportion of the genetic capacity is devoted to the utilization of a variety of carbon sources, including many plant-derived molecules. The identification of five signal peptidase genes, as well as several genes for components of the secretion apparatus, is important given the capacity of Bacillus strains to secrete large amounts of industrially important enzymes. Many of the genes are involved in the synthesis of secondary metabolites, including antibiotics, that are more typically associated with Streptomyces species. The genome contains at least ten prophages or remnants of prophages, indicating that bacteriophage infection has played an important evolutionary role in horizontal gene transfer, in particular in the propagation of bacterial pathogenesis.

3,753 citations

Journal ArticleDOI
Kazuto Kobayashi1, Stanislav Dusko Ehrlich, Alessandra M. Albertini2, G. Amati2, Kasper Krogh Andersen3, Maryvonne Arnaud, Kei Asai4, S. Ashikaga5, Stéphane Aymerich, Philippe Bessières, F. Boland6, S.C. Brignell7, Sierd Bron, Keigo Bunai8, J. Chapuis, L.C. Christiansen, Antoine Danchin, Michel Débarbouillé, Etienne Dervyn, E. Deuerling9, Kevin M. Devine3, Susanne Krogh Devine3, Oliver Dreesen, Jeffery Errington10, Sabine Fillinger7, Simon J. Foster6, Yasutaro Fujita11, Alessandro Galizzi2, Rozenn Gardan, Caroline Eschevins12, Tatsuya Fukushima13, Kazuko Haga, Colin R. Harwood7, Michael Hecker, D. Hosoya14, Marie-Françoise Hullo, Hiroshi Kakeshita8, Dimitri Karamata, Yasuhiro Kasahara, Fujio Kawamura5, K. Koga5, P. Koski, Ritsuko Kuwana15, Daisuke Imamura14, M. Ishimaru14, Shu Ishikawa13, I. Ishio11, D. Le Coq, Anne Masson, Catherine Mauël, Rob Meima12, Rafael P. Mellado, Anne Moir6, Shigeki Moriya, E. Nagakawa11, Hideaki Nanamiya5, S. Nakai, Per Nygaard, Mitsuo Ogura16, T. Ohanan9, Mary O'Reilly3, M. O'Rourke6, Zoltán Prágai7, H.M. Pooley, Georges Rapoport, J.P. Rawlins10, L.A. Rivas, Carlo Rivolta, A. Sadaie, Yoshito Sadaie4, Matti Sarvas, T. Sato14, Hans Henrik Saxild, E. Scanlan3, Wolfgang Schumann9, J.F.M.L. Seegers, Junichi Sekiguchi13, Agnieszka Sekowska, Simone J. Séror, M. Simon, P. Stragier, R. Studer, Hiromu Takamatsu15, Teruo Tanaka16, M. Takeuchi14, H.B. Thomaides10, Valerie Vagner, J.M. van Dijl, Kazuhito Watabe15, Anil Wipat7, Hiroki Yamamoto13, M. Yamamoto11, Y. Yamamoto11, Kunio Yamane8, Katsunori Yata, K. Yoshida11, Hisashi Yoshikawa, Ulrich Zuber, Naotake Ogasawara 
TL;DR: To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, a systematic inactivation of Bacillus subtilis genes was carried out and most genes involved in the Embden–Meyerhof–Parnas pathway are essential.
Abstract: To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among ≈4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were predicted to be essential. The vast majority of essential genes were categorized in relatively few domains of cell metabolism, with about half involved in information processing, one-fifth involved in the synthesis of cell envelope and the determination of cell shape and division, and one-tenth related to cell energetics. Only 4% of essential genes encode unknown functions. Most essential genes are present throughout a wide range of Bacteria, and almost 70% can also be found in Archaea and Eucarya. However, essential genes related to cell envelope, shape, division, and respiration tend to be lost from bacteria with small genomes. Unexpectedly, most genes involved in the Embden–Meyerhof–Parnas pathway are essential. Identification of unknown and unexpected essential genes opens research avenues to better understanding of processes that sustain bacterial life.

1,375 citations

Journal ArticleDOI
TL;DR: The regulatory unit of Bacillus subtilis strain 168 encompassing the structural genes of the N-acetylmuramoyl-L-alanine amidase and of its modifier has been sequenced, and found to be a divergon consisting of divergently transcribed operons lytABC and lytR.
Abstract: The regulatory unit of Bacillus subtilis strain 168 encompassing the structural genes of the N-acetylmuramoyl-L-alanine amidase and of its modifier has been sequenced, and found to be a divergon consisting of divergently transcribed operons lytABC and lytR. Proteins LytA, LytB and LytC are endowed with export signal peptides. Mature LytA is a 9.4 kDa, highly acidic polypeptide whose deduced amino acid sequence points to a lipoprotein. LytB and LytC, the modifier and the amidase, are highly basic. After cleavage of the signal sequence their molecular masses are 74.1 and 49.9 kDa, respectively. These two proteins share considerable homology in their N-terminal moieties and have three GSNRY consensus motifs, characteristic of nearly all amidases. The C-terminal moiety of LytB exhibits homology to the product of spollD. LytR is a 35 kDa protein which acts as an attenuator of the expression of both lytABC and lytR operons. Transcription of the lytABC operon proceeds from two promoters: PD, identified as P28–7 (Gilman et al., 1984), and an upstream PA. The former only is subject to LytR attenuation. Translational initiation of lytB and lytC is directed by UUG start codons, suggesting that lytA, B and C undergo coupled translation. Transcription of lytR is initiated at two start sites, one of which corresponds to a highly intense PA promoter whereas the other does not seem to share much homology with any of the known promoter consensus sequences. Both promoters are attenuated by LytR. It is confirmed that the synthesis of the amidase is controlled at least in part by SigD, i.e. that it belongs to the fla regulon and that its activity, or part of it, is co-regulated with flagellar motility. The role of the mutations conferring the Sin, Fla and Ifm phenotypes in the expression of the lytABC operon is discussed.

241 citations

Journal ArticleDOI
TL;DR: The gene (ptsK) encoding this serine/threonine protein kinase is identified, the purified protein product is characterized and the reported results advance the understanding of phosphorylation‐dependent carbon control mechanisms in Gram‐positive bacteria.
Abstract: HPr(Ser) kinase is the sensor in a multicomponent phosphorelay system that controls catabolite repression, sugar transport and carbon metabolism in gram-positive bacteria. Unlike most other protein kinases, it recognizes the tertiary structure in its target protein, HPr, a phosphocarrier protein of the bacterial phosphotransferase system and a transcriptional cofactor controlling the phenomenon of catabolite repression. We have identified the gene (ptsK) encoding this serine/threonine protein kinase and characterized the purified protein product. Orthologues of PtsK have been identified only in bacteria. These proteins constitute a novel family unrelated to other previously characterized protein phosphorylating enzymes. The Bacillus subtilis kinase is shown to be allosterically activated by metabolites such as fructose 1,6-bisphosphate and inhibited by inorganic phosphate. In contrast to wild-type B. subtilis, the ptsK mutant is insensitive to transcriptional regulation by catabolite repression. The reported results advance our understanding of phosphorylation-dependent carbon control mechanisms in Gram-positive bacteria.

222 citations

Journal ArticleDOI
TL;DR: Observations, revealing impaired metabolism of both wall teichoic acids of B. subtilis 168, i.e. poly(glycerol phosphate), and poly(glucose galactosamine phosphate), combined with sequence homologies, suggest that TagG and TagH are involved in the translocation through the cytoplasmic membrane of the latter te Jerichoic acids or their precursors.
Abstract: We report the nucleotide sequence and the characterization of the Bacillus subtilis tagGH operon. The latter is controlled by a sigma A-dependent promoter and situated in the 308 degrees chromosomal region which contains genes involved in teichoic acid biosynthesis. TagG is a hydrophobic 32.2 kDa protein which resembles integral membrane proteins belonging to polymer-export systems of Gram-negative bacteria. Gene tagH encodes a 59.9 kDa protein whose N-moiety contains the ATP-binding motif and shares extensive homology with a number of ATP-binding proteins, particularly with those associated with the transport of capsular polysaccharides and O-antigens. That the tagGH operon is essential for cell growth was established by the failure to inactivate tagG and the 5'-moiety of tagH by insertional mutagenesis. During limited tagGH expression, cells exhibited a cocoid morphology while their walls contained reduced amounts of phosphate as well as galactosamine. These observations, revealing impaired metabolism of both wall teichoic acids of B. subtilis 168, i.e. poly(glycerol phosphate), and poly(glucose galactosamine phosphate), combined with sequence homologies, suggest that TagG and TagH are involved in the translocation through the cytoplasmic membrane of the latter teichoic acids or their precursors.

139 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2010-Nature
TL;DR: The Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence, from faecal samples of 124 European individuals are described, indicating that the entire cohort harbours between 1,000 and 1,150 prevalent bacterial species and each individual at least 160 such species.
Abstract: To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence, from faecal samples of 124 European individuals. The gene set, ~150 times larger than the human gene complement, contains an overwhelming majority of the prevalent (more frequent) microbial genes of the cohort and probably includes a large proportion of the prevalent human intestinal microbial genes. The genes are largely shared among individuals of the cohort. Over 99% of the genes are bacterial, indicating that the entire cohort harbours between 1,000 and 1,150 prevalent bacterial species and each individual at least 160 such species, which are also largely shared. We define and describe the minimal gut metagenome and the minimal gut bacterial genome in terms of functions present in all individuals and most bacteria, respectively

9,268 citations

Journal ArticleDOI
11 Jun 1998-Nature
TL;DR: The complete genome sequence of the best-characterized strain of Mycobacterium tuberculosis, H37Rv, has been determined and analysed in order to improve the understanding of the biology of this slow-growing pathogen and to help the conception of new prophylactic and therapeutic interventions.
Abstract: Countless millions of people have died from tuberculosis, a chronic infectious disease caused by the tubercle bacillus. The complete genome sequence of the best-characterized strain of Mycobacterium tuberculosis, H37Rv, has been determined and analysed in order to improve our understanding of the biology of this slow-growing pathogen and to help the conception of new prophylactic and therapeutic interventions. The genome comprises 4,411,529 base pairs, contains around 4,000 genes, and has a very high guanine + cytosine content that is reflected in the biased amino-acid content of the proteins. M. tuberculosis differs radically from other bacteria in that a very large portion of its coding capacity is devoted to the production of enzymes involved in lipogenesis and lipolysis, and to two new families of glycine-rich proteins with a repetitive structure that may represent a source of antigenic variation.

7,779 citations

Journal ArticleDOI
TL;DR: These mutants—the ‘Keio collection’—provide a new resource not only for systematic analyses of unknown gene functions and gene regulatory networks but also for genome‐wide testing of mutational effects in a common strain background, E. coli K‐12 BW25113.
Abstract: We have systematically made a set of precisely defined, single-gene deletions of all nonessential genes in Escherichia coli K-12. Open-reading frame coding regions were replaced with a kanamycin cassette flanked by FLP recognition target sites by using a one-step method for inactivation of chromosomal genes and primers designed to create in-frame deletions upon excision of the resistance cassette. Of 4288 genes targeted, mutants were obtained for 3985. To alleviate problems encountered in high-throughput studies, two independent mutants were saved for every deleted gene. These mutants-the 'Keio collection'-provide a new resource not only for systematic analyses of unknown gene functions and gene regulatory networks but also for genome-wide testing of mutational effects in a common strain background, E. coli K-12 BW25113. We were unable to disrupt 303 genes, including 37 of unknown function, which are candidates for essential genes. Distribution is being handled via GenoBase (http://ecoli.aist-nara.ac.jp/).

7,428 citations

Journal ArticleDOI
31 Aug 2000-Nature
TL;DR: It is proposed that the size and complexity of the P. aeruginosa genome reflect an evolutionary adaptation permitting it to thrive in diverse environments and resist the effects of a variety of antimicrobial substances.
Abstract: Pseudomonas aeruginosa is a ubiquitous environmental bacterium that is one of the top three causes of opportunistic human infections. A major factor in its prominence as a pathogen is its intrinsic resistance to antibiotics and disinfectants. Here we report the complete sequence of P. aeruginosa strain PAO1. At 6.3 million base pairs, this is the largest bacterial genome sequenced, and the sequence provides insights into the basis of the versatility and intrinsic drug resistance of P. aeruginosa. Consistent with its larger genome size and environmental adaptability, P. aeruginosa contains the highest proportion of regulatory genes observed for a bacterial genome and a large number of genes involved in the catabolism, transport and efflux of organic compounds as well as four potential chemotaxis systems. We propose that the size and complexity of the P. aeruginosa genome reflect an evolutionary adaptation permitting it to thrive in diverse environments and resist the effects of a variety of antimicrobial substances.

4,220 citations

Journal ArticleDOI
TL;DR: Denitrification is intimately related to fundamental cellular processes that include primary and secondary transport, protein translocation, cytochrome c biogenesis, anaerobic gene regulation, metalloprotein assembly, and the biosynthesis of the cofactors molybdopterin and heme D1.
Abstract: Denitrification is a distinct means of energy conservation, making use of N oxides as terminal electron acceptors for cellular bioenergetics under anaerobic, microaerophilic, and occasionally aerobic conditions. The process is an essential branch of the global N cycle, reversing dinitrogen fixation, and is associated with chemolithotrophic, phototrophic, diazotrophic, or organotrophic metabolism but generally not with obligately anaerobic life. Discovered more than a century ago and believed to be exclusively a bacterial trait, denitrification has now been found in halophilic and hyperthermophilic archaea and in the mitochondria of fungi, raising evolutionarily intriguing vistas. Important advances in the biochemical characterization of denitrification and the underlying genetics have been achieved with Pseudomonas stutzeri, Pseudomonas aeruginosa, Paracoccus denitrificans, Ralstonia eutropha, and Rhodobacter sphaeroides. Pseudomonads represent one of the largest assemblies of the denitrifying bacteria within a single genus, favoring their use as model organisms. Around 50 genes are required within a single bacterium to encode the core structures of the denitrification apparatus. Much of the denitrification process of gram-negative bacteria has been found confined to the periplasm, whereas the topology and enzymology of the gram-positive bacteria are less well established. The activation and enzymatic transformation of N oxides is based on the redox chemistry of Fe, Cu, and Mo. Biochemical breakthroughs have included the X-ray structures of the two types of respiratory nitrite reductases and the isolation of the novel enzymes nitric oxide reductase and nitrous oxide reductase, as well as their structural characterization by indirect spectroscopic means. This revealed unexpected relationships among denitrification enzymes and respiratory oxygen reductases. Denitrification is intimately related to fundamental cellular processes that include primary and secondary transport, protein translocation, cytochrome c biogenesis, anaerobic gene regulation, metalloprotein assembly, and the biosynthesis of the cofactors molybdopterin and heme D1. An important class of regulators for the anaerobic expression of the denitrification apparatus are transcription factors of the greater FNR family. Nitrate and nitric oxide, in addition to being respiratory substrates, have been identified as signaling molecules for the induction of distinct N oxide-metabolizing enzymes.

3,232 citations