scispace - formally typeset
Search or ask a question
Author

Dimitrios Kritharidis

Bio: Dimitrios Kritharidis is an academic researcher from Intracom. The author has contributed to research in topics: Computer science & Beamforming. The author has an hindex of 10, co-authored 38 publications receiving 363 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The basic system architecture for THz wireless links with bandwidths of more than 50 GHz into optical networks is discussed and the role of PBF is highlighted, which is required in order to overcome the propagation losses, as well as the physical layer and medium access control challenges.
Abstract: This article discusses the basic system architecture for THz wireless links with bandwidths of more than 50 GHz into optical networks. New design principles and breakthrough technologies are required in order to demonstrate terabit- per-second data rates at near zero latency using the proposed system concept. Specifically, we present the concept of designing the baseband signal processing for both the optical and wireless links and using an E2E error correction approach for the combined link. We provide two possible electro-optical baseband interface architectures, namely transparent optical-link and digital- link architectures, which are currently under investigation. THz wireless link requirements are given as well as the main principles and research directions for the development of a new generation of transceiver front-ends that will be capable of operating at ultra-high spectral efficiency by employing higher-order modulation schemes. Moreover, we discuss the need for developing a novel THz network information theory framework, which will take into account the channel characteristics and the nature of interference in the THz band. Finally, we highlight the role of PBF, which is required in order to overcome the propagation losses, as well as the physical layer and medium access control challenges.

190 citations

Journal ArticleDOI
TL;DR: The use of analog radio-over-fiber (ARoF) is proposed and demonstrated as a viable alternative which, combined with space division multiplexing in the optical distribution network as well as photonic integration of the required transceivers, shows a path to a scaleable fronthaul solution for 5G.
Abstract: The introduction of millimeter wave (mm-wave) frequency bands for cellular communications with significantly larger bandwidths compared to their sub-6 GHz counterparts, the resulting densification of network deployments and the introduction of antenna arrays with beamforming result in major increases in fronthaul capacity required for 5G networks As a result, a radical re-design of the radio access network is required since traditional fronthaul technologies are not scaleable In this article the use of analog radio-over-fiber (ARoF) is proposed and demonstrated as a viable alternative which, combined with space division multiplexing in the optical distribution network as well as photonic integration of the required transceivers, shows a path to a scaleable fronthaul solution for 5G The trade-off between digitized and analog fronthaul is discussed and the ARoF architecture proposed by blueSPACE is introduced Two options for the generation of ARoF two-tone signals for mm-wave generation via optical heterodyning are discussed in detail, including designs for the implementation in photonic integrated circuits as well as measurements of their phase noise performance The proposed photonic integrated circuit designs include the use of both InP and SiN platforms for ARoF signal generation and optical beamforming respectively, proposing a joint design that allows for true multi-beam transmission from a single antenna array Phase noise measurements based on laboratory implementations of ARoF generation based on a Mach–Zehnder modulator with suppressed carrier and with an optical phase-locked loop are presented and the suitability of these transmitters is evaluated though phase noise simulations Finally, the viability of the proposed ARoF fronthaul architecture for the transport of high-bandwidth mm-wave 5G signals is proven with the successful implementation of a real-time transmission link based on an ARoF baseband unit with full real-time processing of extended 5G new radio signals with 800 MHz bandwidth, achieving transmission over 10 km of 7-core single-mode multi-core fiber and 9 m mm-wave wireless at 255 GHz with bit error rates below the limit for a 7% overhead hard decision forward error correction

48 citations

Posted Content
TL;DR: The breakthrough novel technology concepts, including the joint design of baseband signal processing for the complete optical and wireless link, the development of broadband and spectrally efficient RF-frontends for frequencies >275 GHz, as well as channel modelling, waveforms, antenna array and multiple-access schemes design, are presented.
Abstract: The present white paper focuses on the system requirements of TERRANOVA. Initially details the key use cases for the TERRANOVA technology and presents the description of the network architecture. In more detail, the use cases are classified into two categories, namely backhaul & fronthaul and access and small cell backhaul. The first category refers to fibre extender, point-to-point and redundancy applications, whereas the latter is designed to support backup connection for small and medium-sized enterprises (SMEs), internet of things (IoT) dense environments, data centres, indoor wireless access, ad hoc networks, and last mile access. Then, it provides the networks architecture for the TERRANOVA system as well as the network elements that need to be deployed. The use cases are matched to specific technical scenarios, namely outdoor fixed point-to-point (P2P), outdoor/indoor individual point-to-multipoint (P2MP), and outdoor/indoor "quasi"-omnidirection, and the key performance requirements of each scenario are identified. Likewise, we present the breakthrough novel technology concepts, including the joint design of baseband signal processing for the complete optical and wireless link, the development of broadband and spectrally efficient RF-frontends for frequencies >275 GHz, as well as channel modelling, waveforms, antenna array and multiple-access schemes design, which we are going to use in order to satisfy the presented requirements. Next, an overview of the required new functionalities in both physical (PHY) layer and medium access control (MAC) layers in the TERRANOVA system architecture will be given. Finally, the individual enablers of the TERRANOVA system are combined to develop particular candidate architectures for each of the three technical scenarios.

44 citations

Journal ArticleDOI
TL;DR: MORPHEUS consists of a state of the art architecture that encompasses heterogeneous reconfigurable accelerators for implementing on the same hardware architecture applications with varying characteristics and a tool chain that eases the implementation of highly complex applications with heterogeneous characteristics.
Abstract: Recently, system designers are facing the challenge of developing systems that have diverse features, are more complex and more powerful, with less power consumption and reduced time to market. These contradictory constraints have forced technology providers to pursue design solutions that will allow design teams to meet the above design targets. In that respect, this paper introduces an innovative technology platform, called MORPHEUS, which intents to provide complete design framework for dealing with the aforementioned challenges. MORPHEUS consists of a state of the art architecture that encompasses heterogeneous reconfigurable accelerators for implementing on the same hardware architecture applications with varying characteristics and a tool chain that, through a software oriented approach, eases the implementation of highly complex applications with heterogeneous characteristics. The proposed approach has been tested and evaluated through state of the art cases studies borrowed from complementary application domains.

33 citations

Proceedings ArticleDOI
12 Jun 2017
TL;DR: This paper presents a centralised and dynamic approach for creating and provisioning network slices for virtual network operators' consumption to offer services to their end customers, focusing on an SDN wireless backhaul use case.
Abstract: The concept of network slicing opens the possibilities to address the complex requirements of multi-tenancy in 5G. To this end, SDN/NFV can act as technology enabler. This paper presents a centralised and dynamic approach for creating and provisioning network slices for virtual network operators' consumption to offer services to their end customers, focusing on an SDN wireless backhaul use case. We demonstrate our approach for dynamic end-to-end slice and service provisioning in a testbed.

32 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive review on Industry 4.0 is conducted and presents an overview of the content, scope, and findings by examining the existing literatures in all of the databases within the Web of Science.

1,906 citations

Journal ArticleDOI
TL;DR: This article presents a large-dimensional and autonomous network architecture that integrates space, air, ground, and underwater networks to provide ubiquitous and unlimited wireless connectivity and identifies several promising technologies for the 6G ecosystem.
Abstract: A key enabler for the intelligent information society of 2030, 6G networks are expected to provide performance superior to 5G and satisfy emerging services and applications. In this article, we present our vision of what 6G will be and describe usage scenarios and requirements for multi-terabyte per second (Tb/s) and intelligent 6G networks. We present a large-dimensional and autonomous network architecture that integrates space, air, ground, and underwater networks to provide ubiquitous and unlimited wireless connectivity. We also discuss artificial intelligence (AI) and machine learning [1], [2] for autonomous networks and innovative air-interface design. Finally, we identify several promising technologies for the 6G ecosystem, including terahertz (THz) communications, very-large-scale antenna arrays [i.e., supermassive (SM) multiple-input, multiple-output (MIMO)], large intelligent surfaces (LISs) and holographic beamforming (HBF), orbital angular momentum (OAM) multiplexing, laser and visible-light communications (VLC), blockchain-based spectrum sharing, quantum communications and computing, molecular communications, and the Internet of Nano-Things.

1,332 citations

Journal ArticleDOI
TL;DR: This paper explores current perspectives in power consumption for next generation networks, and provides a detailed survey on emerging technologies, projects, and work-in-progress standards, which can be adopted in networks and related infrastructures in order to reduce their carbon footprint.
Abstract: The concept of energy-efficient networking has begun to spread in the past few years, gaining increasing popularity. Besides the widespread sensitivity to ecological issues, such interest also stems from economic needs, since both energy costs and electrical requirements of telcos' and Internet Service Providers' infrastructures around the world show a continuously growing trend. In this respect, a common opinion among networking researchers is that the sole introduction of low consumption silicon technologies may not be enough to effectively curb energy requirements. Thus, for disruptively boosting the network energy efficiency, these hardware enhancements must be integrated with ad-hoc mechanisms that explicitly manage energy saving, by exploiting network-specific features. This paper aims at providing a twofold contribution to green networking. At first, we explore current perspectives in power consumption for next generation networks. Secondly, we provide a detailed survey on emerging technologies, projects, and work-in-progress standards, which can be adopted in networks and related infrastructures in order to reduce their carbon footprint. The considered approaches range from energy saving techniques for networked hosts, to technologies and mechanisms for designing next-generation and energy-aware networks and networking equipment.

716 citations

Journal ArticleDOI
TL;DR: A comprehensive review and updated solutions related to 5G network slicing using SDN and NFV, and a discussion on various open source orchestrators and proof of concepts representing industrial contribution are provided.

458 citations

Journal ArticleDOI
TL;DR: A comprehensive survey on NFV is presented, which starts from the introduction of NFV motivations, and provides an extensive and in-depth discussion on state-of-the-art VNF algorithms including VNF placement, scheduling, migration, chaining and multicast.

361 citations