scispace - formally typeset
Search or ask a question
Author

Dimitrios Lymberopoulos

Other affiliations: Yale University
Bio: Dimitrios Lymberopoulos is an academic researcher from Microsoft. The author has contributed to research in topics: Wireless sensor network & Visual sensor network. The author has an hindex of 34, co-authored 80 publications receiving 5177 citations. Previous affiliations of Dimitrios Lymberopoulos include Yale University.


Papers
More filters
Proceedings ArticleDOI
15 Jun 2010
TL;DR: A comprehensive study of smartphone use finds that qualitative similarities exist among users that facilitate the task of learning user behavior and demonstrates the value of adapting to user behavior in the context of a mechanism to predict future energy drain.
Abstract: Using detailed traces from 255 users, we conduct a comprehensive study of smartphone use. We characterize intentional user activities -- interactions with the device and the applications used -- and the impact of those activities on network and energy usage. We find immense diversity among users. Along all aspects that we study, users differ by one or more orders of magnitude. For instance, the average number of interactions per day varies from 10 to 200, and the average amount of data received per day varies from 1 to 1000 MB. This level of diversity suggests that mechanisms to improve user experience or energy consumption will be more effective if they learn and adapt to user behavior. We find that qualitative similarities exist among users that facilitate the task of learning user behavior. For instance, the relative application popularity for can be modeled using an exponential distribution, with different distribution parameters for different users. We demonstrate the value of adapting to user behavior in the context of a mechanism to predict future energy drain. The 90th percentile error with adaptation is less than half compared to predictions based on average behavior across users.

901 citations

Proceedings ArticleDOI
01 Nov 2010
TL;DR: By studying the interaction between smartphone traffic and the radio power management policy, it is found that the power consumption of the radio can be reduced by 35% with minimal impact on the performance of packet exchanges.
Abstract: Using data from 43 users across two platforms, we present a detailed look at smartphone traffic. We find that browsing contributes over half of the traffic, while each of email, media, and maps contribute roughly 10%. We also find that the overhead of lower layer protocols is high because of small transfer sizes. For half of the transfers that use transport-level security, header bytes correspond to 40% of the total. We show that while packet loss is the main factor that limits the throughput of smartphone traffic, larger send buffers at Internet servers can improve the throughput of a quarter of the transfers. Finally, by studying the interaction between smartphone traffic and the radio power management policy, we find that the power consumption of the radio can be reduced by 35% with minimal impact on the performance of packet exchanges.

438 citations

Proceedings ArticleDOI
13 Apr 2015
TL;DR: A detailed analysis of the evaluation study's results is provided, the current state-of-the-art in indoor localization is discussed, and areas that need to be improved to enable the adoption of indoor location services are highlighted.
Abstract: We present the results, experiences and lessons learned from comparing a diverse set of technical approaches to indoor localization during the 2014 Microsoft Indoor Localization Competition. 22 different solutions to indoor localization from different teams around the world were put to test in the same unfamiliar space over the course of 2 days, allowing us to directly compare the accuracy and overhead of various technologies. In this paper, we provide a detailed analysis of the evaluation study's results, discuss the current state-of-the-art in indoor localization, and highlight the areas that, based on our experience from organizing this event, need to be improved to enable the adoption of indoor location services.

349 citations

Proceedings ArticleDOI
15 Jun 2010
TL;DR: The design and prototype of an adaptive location service for mobile devices, a-Loc, that helps reduce this battery drain and improves the accuracy achieved, because it uses multiple sensors.
Abstract: Mobile applications often need location data, to update locally relevant information and adapt the device context. While most smartphones do include a GPS receiver, it's frequent use is restricted due to high battery drain. We design and prototype an adaptive location service for mobile devices, a-Loc, that helps reduce this battery drain. Our design is based on the observation that the required location accuracy varies with location, and hence lower energy and lower accuracy localization methods, such as those based on WiFi and cell-tower triangulation, can sometimes be used. Our method automatically determines the dynamic accuracy requirement for mobile search-based applications. As the user moves, both the accuracy requirements and the location sensor errors change. A-Loc continually tunes the energy expenditure to meet the changing accuracy requirements using the available sensors. A Bayesian estimation framework is used to model user location and sensor errors. Experiments are performed with Android G1 and AT&T Tilt phones, on paths that include outdoor and indoor locations, using war-driving data from Google and Microsoft. The experiments show that a-Loc not only provides significant energy savings, but also improves the accuracy achieved, because it uses multiple sensors.

332 citations

Proceedings ArticleDOI
25 Jun 2012
TL;DR: FM radio signal RSSI values can be used to achieve room-level indoor localization with similar or better accuracy to the one achieved by WiFi signals, and the localization accuracy increases as much as 83% when FM and WiFi signals are combined to generate wireless fingerprints.
Abstract: The major challenge for accurate fingerprint-based indoor localization is the design of robust and discriminative wireless signatures. Even though WiFi RSSI signatures are widely available indoors, they vary significantly over time and are susceptible to human presence, multipath, and fading due to the high operating frequency. To overcome these limitations, we propose to use FM broadcast radio signals for robust indoor fingerprinting. Because of the lower frequency, FM signals are less susceptible to human presence, multipath and fading, they exhibit exceptional indoor penetration, and according to our experimental study they vary less over time when compared to WiFi signals. In this work, we demonstrate through a detailed experimental study in 3 different buildings across the US, that FM radio signal RSSI values can be used to achieve room-level indoor localization with similar or better accuracy to the one achieved by WiFi signals. Furthermore, we propose to use additional signal quality indicators at the physical layer (i.e., SNR, multipath etc.) to augment the wireless signature, and show that localization accuracy can be further improved by more than 5%. More importantly, we experimentally demonstrate that the localization errors of FM andWiFi signals are independent. When FM and WiFi signals are combined to generate wireless fingerprints, the localization accuracy increases as much as 83% (when accounting for wireless signal temporal variations) compared to when WiFi RSSI only is used as a signature.

308 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI

3,152 citations

Journal ArticleDOI
TL;DR: This article surveys existing mobile phone sensing algorithms, applications, and systems, and discusses the emerging sensing paradigms, and formulates an architectural framework for discussing a number of the open issues and challenges emerging in the new area ofMobile phone sensing research.
Abstract: Mobile phones or smartphones are rapidly becoming the central computer and communication device in people's lives. Application delivery channels such as the Apple AppStore are transforming mobile phones into App Phones, capable of downloading a myriad of applications in an instant. Importantly, today's smartphones are programmable and come with a growing set of cheap powerful embedded sensors, such as an accelerometer, digital compass, gyroscope, GPS, microphone, and camera, which are enabling the emergence of personal, group, and communityscale sensing applications. We believe that sensor-equipped mobile phones will revolutionize many sectors of our economy, including business, healthcare, social networks, environmental monitoring, and transportation. In this article we survey existing mobile phone sensing algorithms, applications, and systems. We discuss the emerging sensing paradigms, and formulate an architectural framework for discussing a number of the open issues and challenges emerging in the new area of mobile phone sensing research.

2,316 citations

Journal ArticleDOI
TL;DR: A survey of MCC is given, which helps general readers have an overview of the MCC including the definition, architecture, and applications and the issues, existing solutions, and approaches are presented.
Abstract: Together with an explosive growth of the mobile applications and emerging of cloud computing concept, mobile cloud computing (MCC) has been introduced to be a potential technology for mobile services. MCC integrates the cloud computing into the mobile environment and overcomes obstacles related to the performance (e.g., battery life, storage, and bandwidth), environment (e.g., heterogeneity, scalability, and availability), and security (e.g., reliability and privacy) discussed in mobile computing. This paper gives a survey of MCC, which helps general readers have an overview of the MCC including the definition, architecture, and applications. The issues, existing solutions, and approaches are presented. In addition, the future research directions of MCC are discussed. Copyright © 2011 John Wiley & Sons, Ltd.

2,259 citations

Journal ArticleDOI
TL;DR: This paper provides an extensive survey of mobile cloud computing research, while highlighting the specific concerns in mobile cloud Computing, and presents a taxonomy based on the key issues in this area, and discusses the different approaches taken to tackle these issues.

1,671 citations