scispace - formally typeset
Search or ask a question
Author

Dimitris Drikakis

Bio: Dimitris Drikakis is an academic researcher from University of Nicosia. The author has contributed to research in topics: Turbulence & Mach number. The author has an hindex of 49, co-authored 286 publications receiving 7136 citations. Previous affiliations of Dimitris Drikakis include National Technical University of Athens & Cranfield University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is found that human saliva-disease-carrier droplets may travel up to unexpected considerable distances depending on the wind speed, which implies that considering the environmental conditions, the 2 m social distance may not be sufficient.
Abstract: Our understanding of the mechanisms of airborne transmission of viruses is incomplete. This paper employs computational multiphase fluid dynamics and heat transfer to investigate transport, dispersion, and evaporation of saliva particles arising from a human cough. An ejection process of saliva droplets in air was applied to mimic the real event of a human cough. We employ an advanced three-dimensional model based on fully coupled Eulerian-Lagrangian techniques that take into account the relative humidity, turbulent dispersion forces, droplet phase-change, evaporation, and breakup in addition to the droplet-droplet and droplet-air interactions. We computationally investigate the effect of wind speed on social distancing. For a mild human cough in air at 20 °C and 50% relative humidity, we found that human saliva-disease-carrier droplets may travel up to unexpected considerable distances depending on the wind speed. When the wind speed was approximately zero, the saliva droplets did not travel 2 m, which is within the social distancing recommendations. However, at wind speeds varying from 4 km/h to 15 km/h, we found that the saliva droplets can travel up to 6 m with a decrease in the concentration and liquid droplet size in the wind direction. Our findings imply that considering the environmental conditions, the 2 m social distance may not be sufficient. Further research is required to quantify the influence of parameters such as the environment's relative humidity and temperature among others.

418 citations

Journal ArticleDOI
TL;DR: The study shows that the criteria employed for assessing the face mask performance must be modified to take into account the penetration dynamics of airborne droplet transmission, the fluid dynamics leakage around the filter, and reduction of efficiency during cough cycles.
Abstract: Face mask filters-textile, surgical, or respiratory-are widely used in an effort to limit the spread of airborne viral infections. Our understanding of the droplet dynamics around a face mask filter, including the droplet containment and leakage from and passing through the cover, is incomplete. We present a fluid dynamics study of the transmission of respiratory droplets through and around a face mask filter. By employing multiphase computational fluid dynamics in a fully coupled Eulerian-Lagrangian framework, we investigate the droplet dynamics induced by a mild coughing incident and examine the fluid dynamics phenomena affecting the mask efficiency. The model takes into account turbulent dispersion forces, droplet phase-change, evaporation, and breakup in addition to the droplet-droplet and droplet-air interactions. The model mimics real events by using data, which closely resemble cough experiments. The study shows that the criteria employed for assessing the face mask performance must be modified to take into account the penetration dynamics of airborne droplet transmission, the fluid dynamics leakage around the filter, and reduction of efficiency during cough cycles. A new criterion for calculating more accurately the mask efficiency by taking into account the penetration dynamics is proposed. We show that the use of masks will reduce the airborne droplet transmission and will also protect the wearer from the droplets expelled from other subjects. However, many droplets still spread around and away from the cover, cumulatively, during cough cycles. Therefore, the use of a mask does not provide complete protection, and social distancing remains important during a pandemic. The implications of the reduced mask efficiency and respiratory droplet transmission away from the mask are even more critical for healthcare workers. The results of this study provide evidence of droplet transmission prevention by face masks, which can guide their use and further improvement.

280 citations

Journal ArticleDOI
TL;DR: Numerical tests demonstrate that the new scheme captures shock waves well, significantly improves resolution of low Mach number features and greatly reduces high wave number dissipation in the case of homogeneous decaying turbulence and Richtmyer-Meshkov mixing.

273 citations

Journal ArticleDOI
TL;DR: In this paper, a numerical study of laminar incompressible flows in symmetric plane sudden expansions was carried out, and the results revealed that the flow remains symmetric up to a certain Reynolds number depending on the expansion ratio, while asymmetries appear at higher Reynolds numbers.
Abstract: A numerical study of laminar incompressible flows in symmetric plane sudden expansions was carried out. Computations were performed for various Reynolds number and expansion ratios. The results revealed that the flow remains symmetric up to a certain Reynolds number depending on the expansion ratio, while asymmetries appear at higher Reynolds numbers. The computations indicated that the critical Reynolds number of the symmetry‐breaking bifurcation reduces when increasing the expansion ratio while the flow regains symmetry downstream of an initial channel length. The flow asymmetries were verified by comparing several discretization schemes up to fourth order of accuracy as well as various iterative solvers.

218 citations

Book
21 Sep 2004
TL;DR: In this article, the basic principles in Numerical analysis and solutions for time integration, numerical linear algebra, and solution approaches are presented for combining compressible and preconditioned-compressible solvers.
Abstract: Fundamental Physical and Model Equations.- The Fluid Flow Equations.- The Viscous Fluid Flow Equations.- Curvilinear Coordinates and Transformed Equations.- Overview of Various Formulations and Model Equations.- Basic Principles in Numerical Analysis.- Time Integration Methods.- Numerical Linear Algebra.- Solution Approaches.- Compressible and Preconditioned-Compressible Solvers.- The Artificial Compressibility Method.- Projection Methods: The Basic Theory and the Exact Projection Method.- Approximate Projection Methods.- Modern High-Resolution Methods.- to Modern High-Resolution Methods.- High-Resolution Godunov-Type Methods for Projection Methods.- Centered High-Resolution Methods.- Riemann Solvers and TVD Methods in Strict Conservation Form.- Beyond Second-Order Methods.- Applications.- Variable Density Flows and Volume Tracking Methods.- High-Resolution Methods and Turbulent Flow Computation.

194 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

01 Jan 2005
TL;DR: The Monthly Notices as mentioned in this paper is one of the three largest general primary astronomical research publications in the world, published by the Royal Astronomical Society (RAE), and it is the most widely cited journal in astronomy.
Abstract: Monthly Notices is one of the three largest general primary astronomical research publications. It is an international journal, published by the Royal Astronomical Society. This article 1 describes its publication policy and practice.

2,091 citations

Journal ArticleDOI
TL;DR: In this paper, the authors classify the shape morphing parameters that can be affected by planform alteration (span, sweep, and chord), out-of-plane transformation (twist, dihedral/gull, and span-wise bending), and airfoil adjustment (camber and thickness).
Abstract: Aircraft wings are a compromise that allows the aircraft to fly at a range of flight conditions, but the performance at each condition is sub-optimal. The ability of a wing surface to change its geometry during flight has interested researchers and designers over the years as this reduces the design compromises required. Morphing is the short form for metamorphose; however, there is neither an exact definition nor an agreement between the researchers about the type or the extent of the geometrical changes necessary to qualify an aircraft for the title ‘shape morphing.’ Geometrical parameters that can be affected by morphing solutions can be categorized into: planform alteration (span, sweep, and chord), out-of-plane transformation (twist, dihedral/gull, and span-wise bending), and airfoil adjustment (camber and thickness). Changing the wing shape or geometry is not new. Historically, morphing solutions always led to penalties in terms of cost, complexity, or weight, although in certain circumstances, thes...

1,068 citations

01 Apr 1992
TL;DR: In this paper, the authors proposed a monotone integrated large eddy simulation approach, which incorporates a form of turbulence modeling applicable when the large-scale flows of interest are intrinsically time dependent, thus throwing common statistical models into question.
Abstract: Fluid dynamic turbulence is one of the most challenging computational physics problems because of the extremely wide range of time and space scales involved, the strong nonlinearity of the governing equations, and the many practical and important applications. While most linear fluid instabilities are well understood, the nonlinear interactions among them makes even the relatively simple limit of homogeneous isotropic turbulence difficult to treat physically, mathematically, and computationally. Turbulence is modeled computationally by a two-stage bootstrap process. The first stage, direct numerical simulation, attempts to resolve the relevant physical time and space scales but its application is limited to diffusive flows with a relatively small Reynolds number (Re). Using direct numerical simulation to provide a database, in turn, allows calibration of phenomenological turbulence models for engineering applications. Large eddy simulation incorporates a form of turbulence modeling applicable when the large-scale flows of interest are intrinsically time dependent, thus throwing common statistical models into question. A promising approach to large eddy simulation involves the use of high-resolution monotone computational fluid dynamics algorithms such as flux-corrected transport or the piecewise parabolic method which have intrinsic subgrid turbulence models coupled naturally to the resolved scales in the computed flow. The physical considerations underlying and evidence supporting this monotone integrated large eddy simulation approach are discussed.

849 citations