scispace - formally typeset
Search or ask a question
Author

Dina Emara

Bio: Dina Emara is an academic researcher. The author has contributed to research in topics: Maximum power principle & Voltage source. The author has an hindex of 1, co-authored 1 publications receiving 9 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The enhanced operation and control of DC microgrid systems, which are based on photovoltaic modules, battery storage systems, and DC load, are presented and it is illustrated that the grid-tied mode of operation regulated by voltage source converter control offers more stability than the islanded mode.
Abstract: Recently, the penetration of energy storage systems and photovoltaics has been significantly expanded worldwide. In this regard, this paper presents the enhanced operation and control of DC microgrid systems, which are based on photovoltaic modules, battery storage systems, and DC load. DC–DC and DC–AC converters are coordinated and controlled to achieve DC voltage stability in the microgrid. To achieve such an ambitious target, the system is widely operated in two different modes: stand-alone and grid-connected modes. The novel control strategy enables maximum power generation from the photovoltaic system across different techniques for operating the microgrid. Six different cases are simulated and analyzed using the MATLAB/Simulink platform while varying irradiance levels and consequently varying photovoltaic generation. The proposed system achieves voltage and power stability at different load demands. It is illustrated that the grid-tied mode of operation regulated by voltage source converter control offers more stability than the islanded mode. In general, the proposed battery converter control introduces a stable operation and regulated DC voltage but with few voltage spikes. The merit of the integrated DC microgrid with batteries is to attain further flexibility and reliability through balancing power demand and generation. The simulation results also show the system can operate properly in normal or abnormal cases, thanks to the proposed control strategy, which can regulate the voltage stability of the DC bus in the microgrid with energy storage systems and photovoltaics.

45 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper , a new intelligent integration between an IoT platform and deep learning neural network (DNN) algorithm for the online monitoring of computer numerical control (CNC) machines is introduced.
Abstract: This paper introduces a new intelligent integration between an IoT platform and deep learning neural network (DNN) algorithm for the online monitoring of computer numerical control (CNC) machines. The proposed infrastructure is utilized for monitoring the cutting process while maintaining the cutting stability of CNC machines in order to ensure effective cutting processes that can help to increase the quality of products. For this purpose, a force sensor is installed in the milling CNC machine center to measure the vibration conditions. Accordingly, an IoT architecture is designed to connect the sensor node and the cloud server to capture the real-time machine’s status via message queue telemetry transport (MQTT) protocol. To classify the different cutting conditions (i.e., stable cutting and unstable cuttings), an improved model of DNN is designed in order to maintain the healthy state of the CNC machine. As a result, the developed deep learning can accurately investigate if the transmitted data of the smart sensor via the internet is real cutting data or fake data caused by cyber-attacks or the inefficient reading of the sensor due to the environment temperature, humidity, and noise signals. The outstanding results are obtained from the proposed approach indicating that deep learning can outperform other traditional machine learning methods for vibration control. The Contact elements for IoT are utilized to display the cutting information on a graphical dashboard and monitor the cutting process in real-time. Experimental verifications are performed to conduct different cutting conditions of slot milling while implementing the proposed deep machine learning and IoT-based monitoring system. Diverse scenarios are presented to verify the effectiveness of the developed system, where it can disconnect immediately to secure the system automatically when detecting the cyber-attack and switch to the backup broker to continue the runtime operation.

43 citations

Journal ArticleDOI
TL;DR: A new intelligent integration between an IoT platform and deep learning neural network (DNN) algorithm for the online monitoring of computer numerical control (CNC) machines is introduced, indicating that deep learning can outperform other traditional machine learning methods for vibration control.
Abstract: This paper introduces a new intelligent integration between an IoT platform and deep learning neural network (DNN) algorithm for the online monitoring of computer numerical control (CNC) machines. The proposed infrastructure is utilized for monitoring the cutting process while maintaining the cutting stability of CNC machines in order to ensure effective cutting processes that can help to increase the quality of products. For this purpose, a force sensor is installed in the milling CNC machine center to measure the vibration conditions. Accordingly, an IoT architecture is designed to connect the sensor node and the cloud server to capture the real-time machine’s status via message queue telemetry transport (MQTT) protocol. To classify the different cutting conditions (i.e., stable cutting and unstable cuttings), an improved model of DNN is designed in order to maintain the healthy state of the CNC machine. As a result, the developed deep learning can accurately investigate if the transmitted data of the smart sensor via the internet is real cutting data or fake data caused by cyber-attacks or the inefficient reading of the sensor due to the environment temperature, humidity, and noise signals. The outstanding results are obtained from the proposed approach indicating that deep learning can outperform other traditional machine learning methods for vibration control. The Contact elements for IoT are utilized to display the cutting information on a graphical dashboard and monitor the cutting process in real-time. Experimental verifications are performed to conduct different cutting conditions of slot milling while implementing the proposed deep machine learning and IoT-based monitoring system. Diverse scenarios are presented to verify the effectiveness of the developed system, where it can disconnect immediately to secure the system automatically when detecting the cyber-attack and switch to the backup broker to continue the runtime operation.

36 citations

Journal ArticleDOI
TL;DR: In this paper , an optimal network constraint-based expansion planning model combined with an optimal integration framework of intermittent RERs is proposed to improve the topological flexibility in modern distribution networks, where the best investment locations and times of substations, lines, and RER-based distributed generations are jointly taken into consideration.

31 citations

Journal ArticleDOI
TL;DR: In this paper , the authors present a recent review supported by a statistical analysis about the current situation in Egypt according to the last data carried out from local/global reports, and discuss specifications of technical design standards, terms, and equipment parameters for connecting small, medium, and large-scale solar plants, respectively to the Egyptian grid in accordance with the Electricity Distribution Code (EDC), Solar Energy Grid Connection Code (SEGCC), and the Grid Code (GC).
Abstract: The development of the energy sector in Egypt is considered an urgent issue due to the rapid population rise rate. In particular, renewable energy sources (RESs) applications play an essential role in the coverage of energy demand. Therefore, Egypt has ambitious plans towards RESs to combine a sustainable energy future with economic growth. Egypt has high potentiality for RESs and their applications, nevertheless, the study of this modality remains below the required level. Due to the widespread use of RESs, communities are facing stability issues as the power converters-based RESs create a significant lack of power inertia, causing system instability and power blackouts as well as issues of power quality such as harmonics or resonances due to the power converters and their interactions with the system. This work presents a recent review supported by a statistical analysis about the current situation in Egypt according to the last data carried out from local/global reports. In addition, this review discusses specifications of technical design standards, terms, and equipment parameters for connecting small, medium, and large-scale solar plants, respectively to the Egyptian grid in accordance with the Electricity Distribution Code (EDC), Solar Energy Grid Connection Code (SEGCC), and the Grid Code (GC). Interestingly, the use of hydropower and emergent solar energy is considered the most promising RES variant, besides the wind energy at the coastal sites. This review characterizes the progress in Egypt and classifies interest areas for RESs recent study, e.g., photovoltaic (PV), solar chimney (SC), concentrated solar plant (CSP), and wind energy in Egypt. To maximize the RES hosting capacity in Egypt, various energy storage systems are required to be integrated into the distribution networks. Finally, a view of existing gaps, future visions and projects, and visible recommendations are defined for the Egyptian grid.

29 citations

Journal ArticleDOI
TL;DR: In this article , the authors present a recent review supported by a statistical analysis about the current situation in Egypt according to the last data carried out from local/global reports, and discuss specifications of technical design standards, terms, and equipment parameters for connecting small, medium, and large-scale solar plants, respectively to the Egyptian grid in accordance with the Electricity Distribution Code (EDC), Solar Energy Grid Connection Code (SEGCC), and the Grid Code (GC).
Abstract: The development of the energy sector in Egypt is considered an urgent issue due to the rapid population rise rate. In particular, renewable energy sources (RESs) applications play an essential role in the coverage of energy demand. Therefore, Egypt has ambitious plans towards RESs to combine a sustainable energy future with economic growth. Egypt has high potentiality for RESs and their applications, nevertheless, the study of this modality remains below the required level. Due to the widespread use of RESs, communities are facing stability issues as the power converters-based RESs create a significant lack of power inertia, causing system instability and power blackouts as well as issues of power quality such as harmonics or resonances due to the power converters and their interactions with the system. This work presents a recent review supported by a statistical analysis about the current situation in Egypt according to the last data carried out from local/global reports. In addition, this review discusses specifications of technical design standards, terms, and equipment parameters for connecting small, medium, and large-scale solar plants, respectively to the Egyptian grid in accordance with the Electricity Distribution Code (EDC), Solar Energy Grid Connection Code (SEGCC), and the Grid Code (GC). Interestingly, the use of hydropower and emergent solar energy is considered the most promising RES variant, besides the wind energy at the coastal sites. This review characterizes the progress in Egypt and classifies interest areas for RESs recent study, e.g., photovoltaic (PV), solar chimney (SC), concentrated solar plant (CSP), and wind energy in Egypt. To maximize the RES hosting capacity in Egypt, various energy storage systems are required to be integrated into the distribution networks. Finally, a view of existing gaps, future visions and projects, and visible recommendations are defined for the Egyptian grid.

29 citations