scispace - formally typeset
Search or ask a question
Author

Dinesh N. Naik

Bio: Dinesh N. Naik is an academic researcher from Indian Institute of Space Science and Technology. The author has contributed to research in topics: Interferometry & Holography. The author has an hindex of 17, co-authored 68 publications receiving 928 citations. Previous affiliations of Dinesh N. Naik include University of Hyderabad & University of Electro-Communications.


Papers
More filters
Journal ArticleDOI
TL;DR: An overview of recent advances in digital holography is presented, ranging from holographic techniques designed to increase the resolution of microscopic images, holographic imaging using incoherent illumination, phase retrieval with coherent illumination, and the holographic recording of depth-extended objects using a frequency-comb laser.
Abstract: This article presents an overview of recent advances in the field of digital holography, ranging from holographic techniques designed to increase the resolution of microscopic images, holographic imaging using incoherent illumination, phase retrieval with incoherent illumination, imaging of occluded objects, and the holographic recording of depth-extended objects using a frequency-comb laser, to the design of an infrastructure for remote laboratories for digital-holographic microscopy and metrology. The paper refers to current trends in digital holography and explains them using new results that were recently achieved at the Institute for Applied Optics of the University Stuttgart.

191 citations

Journal ArticleDOI
TL;DR: This spatially incoherent lensless imaging technique is simple and capable of variable focusing with adjustable depths of focus that enables depth sensing of 3D objects that are concealed by the diffusing medium.
Abstract: Scattering media, such as diffused glass and biological tissue, are usually treated as obstacles in imaging. To cope with the random phase introduced by a turbid medium, most existing imaging techniques recourse to either phase compensation by optical means or phase recovery using iterative algorithms, and their applications are often limited to two-dimensional imaging. In contrast, we utilize the scattering medium as an unconventional imaging lens and exploit its lens-like properties for lensless three-dimensional (3D) imaging with diffraction-limited resolution. Our spatially incoherent lensless imaging technique is simple and capable of variable focusing with adjustable depths of focus that enables depth sensing of 3D objects that are concealed by the diffusing medium. Wide-field imaging with diffraction-limited resolution is verified experimentally by a single-shot recording of the 1951 USAF resolution test chart, and 3D imaging and depth sensing are demonstrated by shifting focus over axially separated objects.

120 citations

Journal ArticleDOI
TL;DR: The methods are simple, easy to implement and allow fast image reconstruction because they do not require phase correction, complicated image processing, scanning of the object or any kind of wave shaping.
Abstract: Retrieving the information about the object hidden around a corner or obscured by a diffused surface has a vast range of applications. Over the time many techniques have been tried to make this goal realizable. Here, we are presenting yet another approach to retrieve a 3-D object from the scattered field using digital holography with statistical averaging. The methods are simple, easy to implement and allow fast image reconstruction because they do not require phase correction, complicated image processing, scanning of the object or any kind of wave shaping. The methods inherit the merit of digital holography that the micro deformation and displacement of the hidden object can also be detected.

97 citations

Journal ArticleDOI
TL;DR: Speckle contrast close to that of white light was obtained using a vibrating fiber bundle with combined temporal, spatial, and angular diversities of the illumination.
Abstract: We report significant speckle reduction in a laser illumination system using a vibrating multimode optical fiber bundle. The optical fiber bundle was illuminated by two independent lasers simultaneously. The beams from both lasers were first expanded and collimated and were further divided into multiple beams to illuminate the fiber optic bundle with normal and oblique incidence. Static diffusers were also placed at the input and output faces of the fiber bundle, thus introducing the spatial as well as angular diversity of illumination. Experiments were carried out both in free space and in imaging geometry configuration. Standard deviation, speckle contrast and signal-to-noise ratio of the images were computed, and the results were compared with those of white light illumination. Speckle contrast close to that of white light was obtained using a vibrating fiber bundle with combined temporal, spatial, and angular diversities of the illumination.

84 citations

Journal ArticleDOI
TL;DR: In this paper, the concept of spatial statistical optics is introduced with the aim of placing particular focus on spatial statistics of the optical field, rather than on their temporal statistics, and their unique capabilities for coherence and polarization shaping as well as synthesizing stochastic optical fields with desired statistical properties are introduced.
Abstract: Classical statistical optics is revisited with the aim of introducing the concept of spatial statistical optics that places particular focus and special emphasis on spatial statistics of the optical field, rather than on their temporal statistics. The principles of emerging technology of statistical correlation holography based on spatial statistical optics are reviewed, and their unique capabilities for coherence and polarization shaping as well as synthesizing stochastic optical fields with desired statistical properties are introduced.

57 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal Article
TL;DR: In this article, a fast Fourier transform method of topography and interferometry is proposed to discriminate between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour generation techniques.
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,742 citations

Journal Article
J. Walkup1
TL;DR: Development of this more comprehensive model of the behavior of light draws upon the use of tools traditionally available to the electrical engineer, such as linear system theory and the theory of stochastic processes.
Abstract: Course Description This is an advanced course in which we explore the field of Statistical Optics. Topics covered include such subjects as the statistical properties of natural (thermal) and laser light, spatial and temporal coherence, effects of partial coherence on optical imaging instruments, effects on imaging due to randomly inhomogeneous media, and a statistical treatment of the detection of light. Development of this more comprehensive model of the behavior of light draws upon the use of tools traditionally available to the electrical engineer, such as linear system theory and the theory of stochastic processes.

1,364 citations

Journal Article
TL;DR: The theory of image formation is formulated in terms of the coherence function in the object plane, the diffraction distribution function of the image-forming system and a function describing the structure of the object.
Abstract: The theory of image formation is formulated in terms of the coherence function in the object plane, the diffraction distribution function of the image-forming system and a function describing the structure of the object. There results a four-fold integral involving these functions, and the complex conjugate functions of the latter two. This integral is evaluated in terms of the Fourier transforms of the coherence function, the diffraction distribution function and its complex conjugate. In fact, these transforms are respectively the distribution of intensity in an 'effective source', and the complex transmission of the optical system-they are the data initially known and are generally of simple form. A generalized 'transmission factor' is found which reduces to the known results in the simple cases of perfect coherence and complete incoherence. The procedure may be varied in a manner more suited to non-periodic objects. The theory is applied to study inter alia the influence of the method of illumination on the images of simple periodic structures and of an isolated line.

566 citations

Journal ArticleDOI
TL;DR: It is outlined how virtually all the previous ISO-standard beam diagnostic techniques may be readily replaced with all-digital equivalents, thus paving the way for unravelling of light in real time.
Abstract: Modal decomposition of light has been known for a long time, applied mostly to pattern recognition. With the commercialization of liquid-crystal devices, digital holography as an enabling tool has become accessible to all, and with it all-digital tools for the decomposition of light have finally come of age. We review recent advances in unravelling the properties of light, from the modal structure of laser beams to decoding the information stored in orbital angular momentum (OAM)-carrying fields. We show application of these tools to fiber lasers, solid-state lasers, and structured light created in the laboratory by holographic laser beam shaping. We show by experimental implementation how digital holograms may be used to infer the intensity, phase, wavefront, Poynting vector, polarization, and OAM density of some unknown optical field. In particular, we outline how virtually all the previous ISO-standard beam diagnostic techniques may be readily replaced with all-digital equivalents, thus paving the way for unravelling of light in real time. Such tools are highly relevant to the in situ analysis of laser systems, to mode division multiplexing as an emerging tool in optical communication, and for quantum information processing with entangled photons.

503 citations