scispace - formally typeset
Search or ask a question
Author

Dinesh Rajan

Other affiliations: Methodist University, Rice University, Nokia  ...read more
Bio: Dinesh Rajan is an academic researcher from Southern Methodist University. The author has contributed to research in topics: Communication channel & Wireless network. The author has an hindex of 15, co-authored 150 publications receiving 1321 citations. Previous affiliations of Dinesh Rajan include Methodist University & Rice University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that packet scheduling based on queue state can be used to trade queuing delay with transmission power, even on additive white Gaussian noise channels, and a low-complexity scheduler is proposed that has near-optimal performance.
Abstract: In this paper, we study minimal power transmission of bursty sources over wireless channels with constraints on mean queuing delay. The power minimizing schedulers adapt power and rate of transmission based on the queue and channel state. We show that packet scheduling based on queue state can be used to trade queuing delay with transmission power, even on additive white Gaussian noise (AWGN) channels. Our extensive simulations show that small increases in average delay can lead to substantial savings in transmission power, thereby providing another avenue for mobile devices to save on battery power. We propose a low-complexity scheduler that has near-optimal performance. We also construct a variable-rate quadrature amplitude modulation (QAM)-based transmission scheme to show the benefits of the proposed formulation in a practical communication system. Power optimal schedulers with absolute packet delay constraints are also studied and their performance is evaluated via simulations.

190 citations

Journal ArticleDOI
TL;DR: A novel context‐aware deep convolutional semantic segmentation network is presented to effectively detect cracks in structural infrastructure under various conditions to segment the cracks on images with arbitrary sizes without retraining the prediction network.

120 citations

Journal ArticleDOI
TL;DR: This paper presents, for the first time, a unified blind method for multi-image super-resolution (MISR or SR), single-image blur deconvolution (SIBD), and multi- image blur deconVolution (MIBD) of low-resolution images degraded by linear space-invariant blur, aliasing, and additive white Gaussian noise.
Abstract: This paper presents, for the first time, a unified blind method for multi-image super-resolution (MISR or SR), single-image blur deconvolution (SIBD), and multi-image blur deconvolution (MIBD) of low-resolution (LR) images degraded by linear space-invariant (LSI) blur, aliasing, and additive white Gaussian noise (AWGN). The proposed approach is based on alternating minimization (AM) of a new cost function with respect to the unknown high-resolution (HR) image and blurs. The regularization term for the HR image is based upon the Huber-Markov random field (HMRF) model, which is a type of variational integral that exploits the piecewise smooth nature of the HR image. The blur estimation process is supported by an edge-emphasizing smoothing operation, which improves the quality of blur estimates by enhancing strong soft edges toward step edges, while filtering out weak structures. The parameters are updated gradually so that the number of salient edges used for blur estimation increases at each iteration. For better performance, the blur estimation is done in the filter domain rather than the pixel domain, i.e., using the gradients of the LR and HR images. The regularization term for the blur is Gaussian (L2 norm), which allows for fast noniterative optimization in the frequency domain. We accelerate the processing time of SR reconstruction by separating the upsampling and registration processes from the optimization procedure. Simulation results on both synthetic and real-life images (from a novel computational imager) confirm the robustness and effectiveness of the proposed method.

94 citations

Proceedings ArticleDOI
06 May 2012
TL;DR: A novel optimization framework for Roadside Unit (RSU) deployment and configuration in a vehicular network is proposed and results shows that optimization over an area with the size of Cambridge, Massachusetts is completed in under 2 minutes.
Abstract: In this paper, we propose a novel optimization framework for Roadside Unit (RSU) deployment and configuration in a vehicular network. We formulate the problem of placement of RSUs and selecting their configurations (e.g. power level, types of antenna and wired/wireless back haul network connectivity) as a linear program. The objective function is to minimize the total cost to deploy and maintain the network of RSU's. A user specified constraint on the minimum coverage provided by the RSU is also incorporated into the optimization framework. Further, the framework also supports the option of specifying selected regions of higher importance such as locations of frequently occurring accidents and incorporating constraints requiring stricter coverage in those areas. Simulation results are presented to demonstrate the feasibility of deployment on the campus map of Southern Methodist University (SMU). The efficiency and scalability of the optimization procedure for large scale problems are also studied and results shows that optimization over an area with the size of Cambridge, Massachusetts is completed in under 2 minutes. Finally, the effects of variation in several key parameters on the resulting design are studied.

88 citations

Book
02 Dec 2010
TL;DR: In this paper, the authors present state-of-the-art optimization modeling for design, analysis, and management of wireless networks, such as cellular and wireless local area networks (LANs), and the services they deliver.
Abstract: This booksurveys state-of-the-art optimization modeling for design, analysis, and management of wireless networks, such as cellular and wireless local area networks (LANs), and the services they deliver. The past two decades have seen a tremendous growth in the deployment and use of wireless networks. The current-generation wireless systems can provide mobile users with high-speed data services at rates substantially higher than those of the previous generation. As a result, the demand for mobile information services with high reliability, fast response times, and ubiquitous connectivity continues to increase rapidly. The optimization of system performance has become critically important both in terms of practical utility and commercial viability, and presents a rich area for research. In the editors' previous work on traditional wired networks, we have observed that designing low cost, survivable telecommunication networks involves extremely complicated processes. Commercial products available to help with this task typically have been based on simulation and/or proprietary heuristics. As demonstrated in this book, however, mathematical programming deserves a prominent place in the designer's toolkit. Convenient modeling languages and powerful optimization solvers have greatly facilitated the implementation of mathematical programming theory into the practice of commercial network design. These points are equally relevant and applicable in todays world of wireless network technology and design. But there are new issues as well: many wireless network design decisions, such as routing and facility/element location, must be dealt with in innovative ways that are unique and distinct from wired (fiber optic) networks. The book specifically treats the recent research and the use of modeling languages and network optimization techniques that are playing particularly important and distinctive roles in the wireless domain.

53 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Proceedings Article
01 Jan 1991
TL;DR: It is concluded that properly augmented and power-controlled multiple-cell CDMA (code division multiple access) promises a quantum increase in current cellular capacity.
Abstract: It is shown that, particularly for terrestrial cellular telephony, the interference-suppression feature of CDMA (code division multiple access) can result in a many-fold increase in capacity over analog and even over competing digital techniques. A single-cell system, such as a hubbed satellite network, is addressed, and the basic expression for capacity is developed. The corresponding expressions for a multiple-cell system are derived. and the distribution on the number of users supportable per cell is determined. It is concluded that properly augmented and power-controlled multiple-cell CDMA promises a quantum increase in current cellular capacity. >

2,951 citations

Journal ArticleDOI
24 Apr 2009
TL;DR: This information-theoretic survey provides guidelines for the spectral efficiency gains possible through cognitive radios, as well as practical design ideas to mitigate the coexistence challenges in today's crowded spectrum.
Abstract: Cognitive radios hold tremendous promise for increasing spectral efficiency in wireless systems. This paper surveys the fundamental capacity limits and associated transmission techniques for different wireless network design paradigms based on this promising technology. These paradigms are unified by the definition of a cognitive radio as an intelligent wireless communication device that exploits side information about its environment to improve spectrum utilization. This side information typically comprises knowledge about the activity, channels, codebooks, and/or messages of other nodes with which the cognitive node shares the spectrum. Based on the nature of the available side information as well as a priori rules about spectrum usage, cognitive radio systems seek to underlay, overlay, or interweave the cognitive radios' signals with the transmissions of noncognitive nodes. We provide a comprehensive summary of the known capacity characterizations in terms of upper and lower bounds for each of these three approaches. The increase in system degrees of freedom obtained through cognitive radios is also illuminated. This information-theoretic survey provides guidelines for the spectral efficiency gains possible through cognitive radios, as well as practical design ideas to mitigate the coexistence challenges in today's crowded spectrum.

2,516 citations

Journal ArticleDOI

2,415 citations

01 Nov 1981
TL;DR: In this paper, the authors studied the effect of local derivatives on the detection of intensity edges in images, where the local difference of intensities is computed for each pixel in the image.
Abstract: Most of the signal processing that we will study in this course involves local operations on a signal, namely transforming the signal by applying linear combinations of values in the neighborhood of each sample point. You are familiar with such operations from Calculus, namely, taking derivatives and you are also familiar with this from optics namely blurring a signal. We will be looking at sampled signals only. Let's start with a few basic examples. Local difference Suppose we have a 1D image and we take the local difference of intensities, DI(x) = 1 2 (I(x + 1) − I(x − 1)) which give a discrete approximation to a partial derivative. (We compute this for each x in the image.) What is the effect of such a transformation? One key idea is that such a derivative would be useful for marking positions where the intensity changes. Such a change is called an edge. It is important to detect edges in images because they often mark locations at which object properties change. These can include changes in illumination along a surface due to a shadow boundary, or a material (pigment) change, or a change in depth as when one object ends and another begins. The computational problem of finding intensity edges in images is called edge detection. We could look for positions at which DI(x) has a large negative or positive value. Large positive values indicate an edge that goes from low to high intensity, and large negative values indicate an edge that goes from high to low intensity. Example Suppose the image consists of a single (slightly sloped) edge:

1,829 citations