scispace - formally typeset
Search or ask a question
Author

Dinggang Shen

Bio: Dinggang Shen is an academic researcher from ShanghaiTech University. The author has contributed to research in topics: Segmentation & Image registration. The author has an hindex of 109, co-authored 1350 publications receiving 50446 citations. Previous affiliations of Dinggang Shen include University of Pennsylvania & Veterans Health Administration.


Papers
More filters
Journal ArticleDOI
TL;DR: This review covers computer-assisted analysis of images in the field of medical imaging and introduces the fundamentals of deep learning methods and their successes in image registration, detection of anatomical and cellular structures, tissue segmentation, computer-aided disease diagnosis and prognosis, and so on.
Abstract: This review covers computer-assisted analysis of images in the field of medical imaging. Recent advances in machine learning, especially with regard to deep learning, are helping to identify, classify, and quantify patterns in medical images. At the core of these advances is the ability to exploit hierarchical feature representations learned solely from data, instead of features designed by hand according to domain-specific knowledge. Deep learning is rapidly becoming the state of the art, leading to enhanced performance in various medical applications. We introduce the fundamentals of deep learning methods and review their successes in image registration, detection of anatomical and cellular structures, tissue segmentation, computer-aided disease diagnosis and prognosis, and so on. We conclude by discussing research issues and suggesting future directions for further improvement.

2,653 citations

Posted ContentDOI
Spyridon Bakas1, Mauricio Reyes, Andras Jakab2, Stefan Bauer3  +435 moreInstitutions (111)
TL;DR: This study assesses the state-of-the-art machine learning methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018, and investigates the challenge of identifying the best ML algorithms for each of these tasks.
Abstract: Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumoris a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses thestate-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that underwent gross tota lresection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.

1,165 citations

Journal ArticleDOI
TL;DR: A new approach is presented for elastic registration of medical images, and is applied to magnetic resonance images of the brain, where it results in accurate superposition of image data from individuals with significant anatomical differences.
Abstract: A new approach is presented for elastic registration of medical images, and is applied to magnetic resonance images of the brain. Experimental results demonstrate very high accuracy in superposition of images from different subjects. There are two major novelties in the proposed algorithm. First, it uses an attribute vector, i.e., a set of geometric moment invariants (GMIs) that are defined on each voxel in an image and are calculated from the tissue maps, to reflect the underlying anatomy at different scales. The attribute vector, if rich enough, can distinguish between different parts of an image, which helps establish anatomical correspondences in the deformation procedure; it also helps reduce local minima, by reducing ambiguity in potential matches. This is a fundamental deviation of our method, referred to as the hierarchical attribute matching mechanism for elastic registration (HAMMER), from other volumetric deformation methods, which are typically based on maximizing image similarity. Second, in order to avoid being trapped by local minima, i.e., suboptimal poor matches, HAMMER uses a successive approximation of the energy function being optimized by lower dimensional smooth energy functions, which are constructed to have significantly fewer local minima. This is achieved by hierarchically selecting the driving features that have distinct attribute vectors, thus, drastically reducing ambiguity in finding correspondence. A number of experiments demonstrate that the proposed algorithm results in accurate superposition of image data from individuals with significant anatomical differences.

1,134 citations

Journal ArticleDOI
TL;DR: Three modalities of biomarkers are proposed to combine, i.e., MRI, FDG-PET, and CSF biomarkers, to discriminate between AD (or MCI) and healthy controls, using a kernel combination method, and shows considerably better performance, compared to the case of using an individual modality of biomarker.

1,109 citations

Journal ArticleDOI
TL;DR: This review paper covers the entire pipeline of medical imaging and analysis techniques involved with COVID-19, including image acquisition, segmentation, diagnosis, and follow-up, and particularly focuses on the integration of AI with X-ray and CT, both of which are widely used in the frontline hospitals.
Abstract: The pandemic of coronavirus disease 2019 (COVID-19) is spreading all over the world. Medical imaging such as X-ray and computed tomography (CT) plays an essential role in the global fight against COVID-19, whereas the recently emerging artificial intelligence (AI) technologies further strengthen the power of the imaging tools and help medical specialists. We hereby review the rapid responses in the community of medical imaging (empowered by AI) toward COVID-19. For example, AI-empowered image acquisition can significantly help automate the scanning procedure and also reshape the workflow with minimal contact to patients, providing the best protection to the imaging technicians. Also, AI can improve work efficiency by accurate delineation of infections in X-ray and CT images, facilitating subsequent quantification. Moreover, the computer-aided platforms help radiologists make clinical decisions, i.e., for disease diagnosis, tracking, and prognosis. In this review paper, we thus cover the entire pipeline of medical imaging and analysis techniques involved with COVID-19, including image acquisition, segmentation, diagnosis, and follow-up. We particularly focus on the integration of AI with X-ray and CT, both of which are widely used in the frontline hospitals, in order to depict the latest progress of medical imaging and radiology fighting against COVID-19.

916 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

14,635 citations

Journal ArticleDOI
TL;DR: This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year, to survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks.

8,730 citations

Journal ArticleDOI
TL;DR: The meaning of the terms "method" and "method bias" are explored and whether method biases influence all measures equally are examined, and the evidence of the effects that method biases have on individual measures and on the covariation between different constructs is reviewed.
Abstract: Despite the concern that has been expressed about potential method biases, and the pervasiveness of research settings with the potential to produce them, there is disagreement about whether they really are a problem for researchers in the behavioral sciences. Therefore, the purpose of this review is to explore the current state of knowledge about method biases. First, we explore the meaning of the terms “method” and “method bias” and then we examine whether method biases influence all measures equally. Next, we review the evidence of the effects that method biases have on individual measures and on the covariation between different constructs. Following this, we evaluate the procedural and statistical remedies that have been used to control method biases and provide recommendations for minimizing method bias.

8,719 citations