scispace - formally typeset
Search or ask a question
Author

Dingshan Yu

Bio: Dingshan Yu is an academic researcher from Sun Yat-sen University. The author has contributed to research in topics: Graphene & Carbon nanotube. The author has an hindex of 44, co-authored 132 publications receiving 12705 citations. Previous affiliations of Dingshan Yu include Wuhan University of Technology & Case Western Reserve University.


Papers
More filters
Journal ArticleDOI
TL;DR: A hierarchically structured carbon microfibre made of an interconnected network of aligned single-walled carbon nanotubes with interposed nitrogen-doped reduced graphene oxide sheets is synthesized and subsequently used to make a supercapacitor with high volumetric energy density.
Abstract: Hierarchical hybrid carbon fibres consisting of a network of nitrogen-doped reduced graphene oxide and single-walled carbon nanotubes are synthesized and subsequently used to make a supercapacitor with high volumetric energy density.

1,276 citations

Journal ArticleDOI
TL;DR: In this paper, aqueous dispersions of polymer-modified graphene sheets were prepared via in situ reduction of exfoliated graphite oxides in the presence of cationic poly(ethyleneimine) (PEI).
Abstract: Stable aqueous dispersions of polymer-modified graphene sheets were prepared via in situ reduction of exfoliated graphite oxides in the presence of cationic poly(ethyleneimine) (PEI). The resultant water-soluble PEI-modified graphene sheets were then used for sequential self-assembly with acid-oxidized multiwalled carbon nanotubes, forming hybrid carbon films. These hybrid films were demonstrated to possess an interconnected network of carbon structures with well-defined nanopores to be promising for supercapacitor electrodes, exhibiting a nearly rectangular cyclic voltammogram even at an exceedingly high scan rate of 1 V/s with an average specific capacitance of 120 F/g.

1,108 citations

Journal ArticleDOI
TL;DR: Platinum nanoparticles have long been regarded as the best catalyst for the ORR and are still commonly used in fuel cells due to their relatively low overpotential and high current density with respect to other commercial catalysts, but the kinetics on the Pt-based electrode is sluggish, and the Pt electrocatalyst still suffers from multiple drawbacks.
Abstract: : The oxygen reduction reaction (ORR) is an important process in many fields, including energy conversion (fuel cells, metal air batteries), corrosion, and biosensing. For fuel cells, the cathodic oxygen reduction is a major factor limiting their performance. The ORR can proceed either through a four-electron process to directly combine oxygen with electrons and protons into water as the end product, or a less efficient two-step, two-electron pathway involving the formation of hydroperoxide ions as intermediate. Oxygen reduction also occurs, albeit too slowly to be of any practical significance, in the absence of an ORR catalyst on the cathode. Platinum nanoparticles have long been regarded as the best catalyst for the ORR and are still commonly used in fuel cells due to their relatively low overpotential and high current density with respect to other commercial catalysts. However, the ORR kinetics on the Pt-based electrode is sluggish, and the Pt electrocatalyst still suffers from multiple drawbacks, such as susceptibility to fuel crossover from the anode, deactivation by CO, and poor stability under electrochemical conditions. In addition, the high cost of Pt and its limited natural reserves are the major barriers to mass-market fuel cells for commercial applications.

712 citations

Journal ArticleDOI
29 Mar 2010-Langmuir
TL;DR: This letter demonstrates that a novel, highly efficient enzyme electrode can be directly obtained using covalent attachment between carboxyl acid groups of graphene oxide sheets and amines of glucose oxidase, suggesting potentials for a wide range of practical applications.
Abstract: This letter demonstrates that a novel, highly efficient enzyme electrode can be directly obtained using covalent attachment between carboxyl acid groups of graphene oxide sheets and amines of glucose oxidase. The resulting biosensor exhibits a broad linear range up to 28 mM·mm−2 glucose with a sensitivity of 8.045 mA·cm−2·M−1. The glucose oxidase-immobilized graphene oxide electrode also shows a reproducibility and a good storage stability, suggesting potentials for a wide range of practical applications. The biocompatibility of as-synthesized graphene oxide nanosheets with human cells, especially retinal pigment epithelium (RPE) cells, was investigated for the first time in the present work. Microporous graphene oxide exhibits good biocompatibility and has potential advantages with respect to cell attachment and proliferation, leading to opportunities for using graphene-based biosensors for the clinical diagnosis.

658 citations

Journal ArticleDOI
TL;DR: The adsorption-induced intermolecular charge-transfer should provide a general approach to various carbon-based efficient metal-free ORR catalysts for oxygen reduction in fuel cells, and even new catalytic materials for applications beyond fuel cells.
Abstract: Having a strong electron-withdrawing ability, poly(diallyldimethylammonium chloride) (PDDA) was used to create net positive charge for carbon atoms in the nanotube carbon plane via intermolecular charge transfer. The resultant PDDA functionalized/adsorbed carbon nanotubes (CNTs), either in an aligned or nonaligned form, were demonstrated to act as metal-free catalysts for oxygen reduction reaction (ORR) in fuel cells with similar performance as Pt catalysts. The adsorption-induced intermolecular charge-transfer should provide a general approach to various carbon-based efficient metal-free ORR catalysts for oxygen reduction in fuel cells, and even new catalytic materials for applications beyond fuel cells.

656 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Abstract: There is intense interest in graphene in fields such as physics, chemistry, and materials science, among others. Interest in graphene's exceptional physical properties, chemical tunability, and potential for applications has generated thousands of publications and an accelerating pace of research, making review of such research timely. Here is an overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.

8,919 citations

Journal ArticleDOI
07 Jun 2012-Nature
TL;DR: Taking the step towards successful commercialization requires oxygen reduction electrocatalysts that meet exacting performance targets, and these catalyst systems will need to be highly durable, fault-tolerant and amenable to high-volume production with high yields and exceptional quality.
Abstract: Fuel cells powered by hydrogen from secure and renewable sources are the ideal solution for non-polluting vehicles, and extensive research and development on all aspects of this technology over the past fifteen years has delivered prototype cars with impressive performances. But taking the step towards successful commercialization requires oxygen reduction electrocatalysts--crucial components at the heart of fuel cells--that meet exacting performance targets. In addition, these catalyst systems will need to be highly durable, fault-tolerant and amenable to high-volume production with high yields and exceptional quality. Not all the catalyst approaches currently being pursued will meet those demands.

4,538 citations

Journal ArticleDOI
TL;DR: The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward a series of key clean energy conversion reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties.
Abstract: A fundamental change has been achieved in understanding surface electrochemistry due to the profound knowledge of the nature of electrocatalytic processes accumulated over the past several decades and to the recent technological advances in spectroscopy and high resolution imaging. Nowadays one can preferably design electrocatalysts based on the deep theoretical knowledge of electronic structures, via computer-guided engineering of the surface and (electro)chemical properties of materials, followed by the synthesis of practical materials with high performance for specific reactions. This review provides insights into both theoretical and experimental electrochemistry toward a better understanding of a series of key clean energy conversion reactions including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward the aforementioned reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties. Also, a rational design of electrocatalysts is proposed starting from the most fundamental aspects of the electronic structure engineering to a more practical level of nanotechnological fabrication.

3,918 citations

Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations