scispace - formally typeset
Search or ask a question
Author

Dingwen Zhang

Bio: Dingwen Zhang is an academic researcher from Northwestern Polytechnical University. The author has contributed to research in topics: Computer science & Medicine. The author has an hindex of 13, co-authored 18 publications receiving 2684 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A novel and effective geospatial object detection framework is proposed by combining the weakly supervised learning (WSL) and high-level feature learning by jointly integrating saliency, intraclass compactness, and interclass separability in a Bayesian framework.
Abstract: The abundant spatial and contextual information provided by the advanced remote sensing technology has facilitated subsequent automatic interpretation of the optical remote sensing images (RSIs). In this paper, a novel and effective geospatial object detection framework is proposed by combining the weakly supervised learning (WSL) and high-level feature learning. First, deep Boltzmann machine is adopted to infer the spatial and structural information encoded in the low-level and middle-level features to effectively describe objects in optical RSIs. Then, a novel WSL approach is presented to object detection where the training sets require only binary labels indicating whether an image contains the target object or not. Based on the learnt high-level features, it jointly integrates saliency, intraclass compactness, and interclass separability in a Bayesian framework to initialize a set of training examples from weakly labeled images and start iterative learning of the object detector. A novel evaluation criterion is also developed to detect model drift and cease the iterative learning. Comprehensive experiments on three optical RSI data sets have demonstrated the efficacy of the proposed approach in benchmarking with several state-of-the-art supervised-learning-based object detection approaches.

660 citations

Journal ArticleDOI
TL;DR: A new SP-MIL framework for co-saliency detection is proposed, which integrates both multiple instance learning (MIL) and self-paced learning (SPL) into a unified learning framework.
Abstract: As an interesting and emerging topic, co-saliency detection aims at simultaneously extracting common salient objects from a group of images On one hand, traditional co-saliency detection approaches rely heavily on human knowledge for designing hand-crafted metrics to possibly reflect the faithful properties of the co-salient regions Such strategies, however, always suffer from poor generalization capability to flexibly adapt various scenarios in real applications On the other hand, most current methods pursue co-saliency detection in unsupervised fashions This, however, tends to weaken their performance in real complex scenarios because they are lack of robust learning mechanism to make full use of the weak labels of each image To alleviate these two problems, this paper proposes a new SP-MIL framework for co-saliency detection, which integrates both multiple instance learning (MIL) and self-paced learning (SPL) into a unified learning framework Specifically, for the first problem, we formulate the co-saliency detection problem as a MIL paradigm to learn the discriminative classifiers to detect the co-saliency object in the “instance-level” The formulated MIL component facilitates our method capable of automatically producing the proper metrics to measure the intra-image contrast and the inter-image consistency for detecting co-saliency in a purely self-learning way For the second problem, the embedded SPL paradigm is able to alleviate the data ambiguity under the weak supervision of co-saliency detection and guide a robust learning manner in complex scenarios Experiments on benchmark datasets together with multiple extended computer vision applications demonstrate the superiority of the proposed framework beyond the state-of-the-arts

488 citations

Journal ArticleDOI
TL;DR: A novel framework for saliency detection is proposed by first modeling the background and then separating salient objects from the background by developing stacked denoising autoencoders with deep learning architectures to model the background.
Abstract: Detection of salient objects from images is gaining increasing research interest in recent years as it can substantially facilitate a wide range of content-based multimedia applications. Based on the assumption that foreground salient regions are distinctive within a certain context, most conventional approaches rely on a number of hand-designed features and their distinctiveness is measured using local or global contrast. Although these approaches have been shown to be effective in dealing with simple images, their limited capability may cause difficulties when dealing with more complicated images. This paper proposes a novel framework for saliency detection by first modeling the background and then separating salient objects from the background. We develop stacked denoising autoencoders with deep learning architectures to model the background where latent patterns are explored and more powerful representations of data are learned in an unsupervised and bottom-up manner. Afterward, we formulate the separation of salient objects from the background as a problem of measuring reconstruction residuals of deep autoencoders. Comprehensive evaluations of three benchmark datasets and comparisons with nine state-of-the-art algorithms demonstrate the superiority of this paper.

427 citations

Journal ArticleDOI
TL;DR: A unified co-salient object detection framework is proposed by introducing two novel insights: looking deep to transfer higher-level representations by using the convolutional neural network with additional adaptive layers could better reflect the sematic properties of the co- salient objects.
Abstract: In this paper, we propose a unified co-salient object detection framework by introducing two novel insights: (1) looking deep to transfer higher-level representations by using the convolutional neural network with additional adaptive layers could better reflect the sematic properties of the co-salient objects; (2) looking wide to take advantage of the visually similar neighbors from other image groups could effectively suppress the influence of the common background regions. The wide and deep information are explored for the object proposal windows extracted in each image. The window-level co-saliency scores are calculated by integrating the intra-image contrast, the intra-group consistency, and the inter-group separability via a principled Bayesian formulation and are then converted to the superpixel-level co-saliency maps through a foreground region agreement strategy. Comprehensive experiments on two existing and one newly established datasets have demonstrated the consistent performance gain of the proposed approach.

295 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: A novel computational framework to simultaneously learn bottom-up and top-down visual features from raw image data using a multiresolution convolutional neural network (Mr-CNN) for predicting eye fixations and achieves state-of-the-art results over four publically available benchmark datasets.
Abstract: It is believed that eye movements in free-viewing of natural scenes are directed by both bottom-up visual saliency and top-down visual factors. In this paper, we propose a novel computational framework to simultaneously learn these two types of visual features from raw image data using a multiresolution convolutional neural network (Mr-CNN) for predicting eye fixations. The Mr-CNN is directly trained from image regions centered on fixation and non-fixation locations over multiple resolutions, using raw image pixels as inputs and eye fixation attributes as labels. Diverse top-down visual features can be learned in higher layers. Meanwhile bottom-up visual saliency can also be inferred via combining information over multiple resolutions. Finally, optimal integration of bottom-up and top-down cues can be learned in the last logistic regression layer to predict eye fixations. The proposed approach achieves state-of-the-art results over four publically available benchmark datasets, demonstrating the superiority of our work.

243 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: A broad survey of the recent advances in convolutional neural networks can be found in this article, where the authors discuss the improvements of CNN on different aspects, namely, layer design, activation function, loss function, regularization, optimization and fast computation.

3,125 citations

Journal ArticleDOI
TL;DR: In this article, a review of deep learning-based object detection frameworks is provided, focusing on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further.
Abstract: Due to object detection’s close relationship with video analysis and image understanding, it has attracted much research attention in recent years. Traditional object detection methods are built on handcrafted features and shallow trainable architectures. Their performance easily stagnates by constructing complex ensembles that combine multiple low-level image features with high-level context from object detectors and scene classifiers. With the rapid development in deep learning, more powerful tools, which are able to learn semantic, high-level, deeper features, are introduced to address the problems existing in traditional architectures. These models behave differently in network architecture, training strategy, and optimization function. In this paper, we provide a review of deep learning-based object detection frameworks. Our review begins with a brief introduction on the history of deep learning and its representative tool, namely, the convolutional neural network. Then, we focus on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further. As distinct specific detection tasks exhibit different characteristics, we also briefly survey several specific tasks, including salient object detection, face detection, and pedestrian detection. Experimental analyses are also provided to compare various methods and draw some meaningful conclusions. Finally, several promising directions and tasks are provided to serve as guidelines for future work in both object detection and relevant neural network-based learning systems.

3,097 citations

Journal ArticleDOI
TL;DR: This work was supported in part by the Royal Society of the UK, the National Natural Science Foundation of China, and the Alexander von Humboldt Foundation of Germany.

2,404 citations

Journal ArticleDOI
TL;DR: The challenges of using deep learning for remote-sensing data analysis are analyzed, recent advances are reviewed, and resources are provided that hope will make deep learning in remote sensing seem ridiculously simple.
Abstract: Central to the looming paradigm shift toward data-intensive science, machine-learning techniques are becoming increasingly important. In particular, deep learning has proven to be both a major breakthrough and an extremely powerful tool in many fields. Shall we embrace deep learning as the key to everything? Or should we resist a black-box solution? These are controversial issues within the remote-sensing community. In this article, we analyze the challenges of using deep learning for remote-sensing data analysis, review recent advances, and provide resources we hope will make deep learning in remote sensing seem ridiculously simple. More importantly, we encourage remote-sensing scientists to bring their expertise into deep learning and use it as an implicit general model to tackle unprecedented, large-scale, influential challenges, such as climate change and urbanization.

2,095 citations