scispace - formally typeset
Search or ask a question
Author

Dipankar Das

Bio: Dipankar Das is an academic researcher. The author has contributed to research in topics: Immunogenicity & Antigen. The author has an hindex of 3, co-authored 3 publications receiving 132 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors reported interim findings of the phase 2 trial on the immunogenicity and safety of BBV152, with the first dose administered on day 0 and the second dose on day 28.
Abstract: Summary Background BBV152 is a whole-virion inactivated SARS-CoV-2 vaccine (3 μg or 6 μg) formulated with a toll-like receptor 7/8 agonist molecule (IMDG) adsorbed to alum (Algel). We previously reported findings from a double-blind, multicentre, randomised, controlled phase 1 trial on the safety and immunogenicity of three different formulations of BBV152 (3 μg with Algel-IMDG, 6 μg with Algel-IMDG, or 6 μg with Algel) and one Algel-only control (no antigen), with the first dose administered on day 0 and the second dose on day 14. The 3 μg and 6 μg with Algel-IMDG formulations were selected for this phase 2 study. Herein, we report interim findings of the phase 2 trial on the immunogenicity and safety of BBV152, with the first dose administered on day 0 and the second dose on day 28. Methods We did a double-blind, randomised, multicentre, phase 2 clinical trial to evaluate the immunogenicity and safety of BBV152 in healthy adults and adolescents (aged 12–65 years) at nine hospitals in India. Participants with positive SARS-CoV-2 nucleic acid and serology tests were excluded. Participants were randomly assigned (1:1) to receive either 3 μg with Algel-IMDG or 6 μg with Algel-IMDG. Block randomisation was done by use of an interactive web response system. Participants, investigators, study coordinators, study-related personnel, and the sponsor were masked to treatment group allocation. Two intramuscular doses of vaccine were administered on day 0 and day 28. The primary outcome was SARS-CoV-2 wild-type neutralising antibody titres and seroconversion rates (defined as a post-vaccination titre that was at least four-fold higher than the baseline titre) at 4 weeks after the second dose (day 56), measured by use of the plaque-reduction neutralisation test (PRNT50) and the microneutralisation test (MNT50). The primary outcome was assessed in all participants who had received both doses of the vaccine. Cell-mediated responses were a secondary outcome and were assessed by T-helper-1 (Th1)/Th2 profiling at 2 weeks after the second dose (day 42). Safety was assessed in all participants who received at least one dose of the vaccine. In addition, we report immunogenicity results from a follow-up blood draw collected from phase 1 trial participants at 3 months after they received the second dose (day 104). This trial is registered at ClinicalTrials.gov , NCT04471519 . Findings Between Sept 5 and 12, 2020, 921 participants were screened, of whom 380 were enrolled and randomly assigned to the 3 μg with Algel-IMDG group (n=190) or 6 μg with Algel-IMDG group (n=190). Geometric mean titres (GMTs; PRNT50) at day 56 were significantly higher in the 6 μg with Algel-IMDG group (197·0 [95% CI 155·6–249·4]) than the 3 μg with Algel-IMDG group (100·9 [74·1–137·4]; p=0·0041). Seroconversion based on PRNT50 at day 56 was reported in 171 (92·9% [95% CI 88·2–96·2] of 184 participants in the 3 μg with Algel-IMDG group and 174 (98·3% [95·1–99·6]) of 177 participants in the 6 μg with Algel-IMDG group. GMTs (MNT50) at day 56 were 92·5 (95% CI 77·7–110·2) in the 3 μg with Algel-IMDG group and 160·1 (135·8–188·8) in the 6 μg with Algel-IMDG group. Seroconversion based on MNT50 at day 56 was reported in 162 (88·0% [95% CI 82·4–92·3]) of 184 participants in the 3 μg with Algel-IMDG group and 171 (96·6% [92·8–98·8]) of 177 participants in the 6 μg with Algel-IMDG group. The 3 μg with Algel-IMDG and 6 μg with Algel-IMDG formulations elicited T-cell responses that were biased to a Th1 phenotype at day 42. No significant difference in the proportion of participants who had a solicited local or systemic adverse reaction in the 3 μg with Algel-IMDG group (38 [20·0%; 95% CI 14·7–26·5] of 190) and the 6 μg with Algel-IMDG group (40 [21·1%; 15·5–27·5] of 190) was observed on days 0–7 and days 28–35; no serious adverse events were reported in the study. From the phase 1 trial, 3-month post-second-dose GMTs (MNT50) were 39·9 (95% CI 32·0–49·9) in the 3μg with Algel-IMDG group, 69·5 (53·7–89·9) in the 6 μg with Algel-IMDG group, 53·3 (40·1–71·0) in the 6 μg with Algel group, and 20·7 (14·5–29·5) in the Algel alone group. Interpretation In the phase 1 trial, BBV152 induced high neutralising antibody responses that remained elevated in all participants at 3 months after the second vaccination. In the phase 2 trial, BBV152 showed better reactogenicity and safety outcomes, and enhanced humoral and cell-mediated immune responses compared with the phase 1 trial. The 6 μg with Algel-IMDG formulation has been selected for the phase 3 efficacy trial. Funding Bharat Biotech International. Translation For the Hindi translation of the abstract see Supplementary Materials section.

255 citations

Journal ArticleDOI
23 Apr 2021-iScience
TL;DR: In this article, the safety and immunogenicity of a whole virion inactivated (WVI) SARS-CoV-2 vaccine (BBV152), adjuvanted with aluminum hydroxide gel (Algel), or TLR7/8 agonist chemisorbed Algel, were evaluated in mice, rats, and rabbits.

61 citations

Posted ContentDOI
22 Dec 2020-medRxiv
TL;DR: A double-blind, randomised, multicentre, phase 2 clinical trial was conducted in this paper to evaluate the immunogenicity and safety of the SARS-CoV-2 vaccine BBV152.
Abstract: Background BBV152 is a whole-virion inactivated SARS-CoV-2 vaccine (3 µg or 6 µg) formulated with a Toll-like receptor 7/8 agonist molecule adsorbed to alum (Algel-IMDG). Earlier, we reported findings from a phase 1 (vaccination regimen on days 0 and 14) randomised, double-blind trial on the safety and immunogenicity of three different formulations of BBV152 and one control arm containing Algel (without antigen). Two formulations were selected for the phase 2 (days 0 and 28) study. Here, we report interim findings of a controlled, randomised, double-blind trial on the immunogenicity and safety of BBV152: 3 µg and 6 µg with Algel-IMDG. Methods We conducted a double-blind, randomised, multicentre, phase 2 clinical trial to evaluate the immunogenicity and safety of BBV152. A total of 380 healthy children and adults were randomised to receive two vaccine formulations (n=190 each) with 3 µg with Algel-IMDG and 6 µg with Algel-IMDG. Two intramuscular doses of vaccines were administered (four weeks apart). Participants, investigators, and laboratory staff were blinded to the treatment allocation. The primary outcome was seroconversion (≥4-fold above baseline) based on wild-type virus neutralisation (PRNT50). Secondary outcomes were reactogenicity and safety. Cell-mediated responses were evaluated. A follow-up blood draw was collected from phase 1 participants at day 104 (three months after the second dose). Findings Among 921 participants screened between Sep 7-13, 2020, 380 participants were randomised to the safety and immunogenicity population. The PRNT50 seroconversion rates of neutralising antibodies on day 56 were 92·9% (88·2, 96·2) and 98·3% (95·1, 99·6) in the 3 µg and 6 µg with Algel-IMDG groups, respectively. Higher neutralising titres (2-fold) were observed in the phase 2 study than in the phase 1 study (p Interpretation In the phase 1 trial, BBV152 produced high levels of neutralising antibodies that remained elevated in all participants three months after the second vaccination. In the phase 2 trial, BBV152 led to tolerable safety outcomes and enhanced humoral and cell-mediated immune responses. The safety profile of BBV152 is noticeably lower than the rates for other SARS-CoV-2 vaccine platform candidates. The 6 µg Algel-IMDG formulation was selected for the phase 3 efficacy trial. Funding This work was supported and funded by Bharat Biotech International Limited. Clinicaltrials.gov: NCT04471519

28 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is shown that neutralization level is highly predictive of immune protection, and an evidence-based model of SARS-CoV-2 immune protection that will assist in developing vaccine strategies to control the future trajectory of the pandemic is provided.
Abstract: Predictive models of immune protection from COVID-19 are urgently needed to identify correlates of protection to assist in the future deployment of vaccines. To address this, we analyzed the relationship between in vitro neutralization levels and the observed protection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using data from seven current vaccines and from convalescent cohorts. We estimated the neutralization level for 50% protection against detectable SARS-CoV-2 infection to be 20.2% of the mean convalescent level (95% confidence interval (CI) = 14.4–28.4%). The estimated neutralization level required for 50% protection from severe infection was significantly lower (3% of the mean convalescent level; 95% CI = 0.7–13%, P = 0.0004). Modeling of the decay of the neutralization titer over the first 250 d after immunization predicts that a significant loss in protection from SARS-CoV-2 infection will occur, although protection from severe disease should be largely retained. Neutralization titers against some SARS-CoV-2 variants of concern are reduced compared with the vaccine strain, and our model predicts the relationship between neutralization and efficacy against viral variants. Here, we show that neutralization level is highly predictive of immune protection, and provide an evidence-based model of SARS-CoV-2 immune protection that will assist in developing vaccine strategies to control the future trajectory of the pandemic. Estimates of the levels of neutralizing antibodies necessary for protection against symptomatic SARS-CoV-2 or severe COVID-19 are a fraction of the mean level in convalescent serum and will be useful in guiding vaccine rollouts.

2,705 citations

Journal ArticleDOI
TL;DR: In this article, structural and cellular foundations for understanding the multistep SARS-CoV-2 entry process, including S protein synthesis, S protein structure, conformational transitions necessary for association of the spike (S) protein with ACE2, engagement of the receptor-binding domain of the S protein with ACS, proteolytic activation of S protein, endocytosis and membrane fusion are provided.
Abstract: The unprecedented public health and economic impact of the COVID-19 pandemic caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been met with an equally unprecedented scientific response. Much of this response has focused, appropriately, on the mechanisms of SARS-CoV-2 entry into host cells, and in particular the binding of the spike (S) protein to its receptor, angiotensin-converting enzyme 2 (ACE2), and subsequent membrane fusion. This Review provides the structural and cellular foundations for understanding the multistep SARS-CoV-2 entry process, including S protein synthesis, S protein structure, conformational transitions necessary for association of the S protein with ACE2, engagement of the receptor-binding domain of the S protein with ACE2, proteolytic activation of the S protein, endocytosis and membrane fusion. We define the roles of furin-like proteases, transmembrane protease, serine 2 (TMPRSS2) and cathepsin L in these processes, and delineate the features of ACE2 orthologues in reservoir animal species and S protein adaptations that facilitate efficient human transmission. We also examine the utility of vaccines, antibodies and other potential therapeutics targeting SARS-CoV-2 entry mechanisms. Finally, we present key outstanding questions associated with this critical process.

988 citations

Journal ArticleDOI
22 Feb 2021
TL;DR: The SARS-CoV-2 virus is an RNA virus that belongs to the Coronaviridae family and causes COVID-19 disease, which caused more than 1,866,000 deaths as discussed by the authors.
Abstract: The new SARS-CoV-2 virus is an RNA virus that belongs to the Coronaviridae family and causes COVID-19 disease. The newly sequenced virus appears to originate in China and rapidly spread throughout the world, becoming a pandemic that, until January 5th, 2021, has caused more than 1,866,000 deaths. Hence, laboratories worldwide are developing an effective vaccine against this disease, which will be essential to reduce morbidity and mortality. Currently, there more than 64 vaccine candidates, most of them aiming to induce neutralizing antibodies against the spike protein (S). These antibodies will prevent uptake through the human ACE-2 receptor, thereby limiting viral entrance. Different vaccine platforms are being used for vaccine development, each one presenting several advantages and disadvantages. Thus far, thirteen vaccine candidates are being tested in Phase 3 clinical trials; therefore, it is closer to receiving approval or authorization for large-scale immunizations.

421 citations

Journal ArticleDOI
TL;DR: A review of the known knowns and known unknowns of adjuvants can be found in this article, where the authors discuss emerging concepts and highlight how our expanding knowledge about innate immunity and systems vaccinology are revitalizing the science and development of novel adjuants for use in vaccines against COVID-19 and future pandemics.
Abstract: Adjuvants are vaccine components that enhance the magnitude, breadth and durability of the immune response. Following its introduction in the 1920s, alum remained the only adjuvant licensed for human use for the next 70 years. Since the 1990s, a further five adjuvants have been included in licensed vaccines, but the molecular mechanisms by which these adjuvants work remain only partially understood. However, a revolution in our understanding of the activation of the innate immune system through pattern recognition receptors (PRRs) is improving the mechanistic understanding of adjuvants, and recent conceptual advances highlight the notion that tissue damage, different forms of cell death, and metabolic and nutrient sensors can all modulate the innate immune system to activate adaptive immunity. Furthermore, recent advances in the use of systems biology to probe the molecular networks driving immune response to vaccines ('systems vaccinology') are revealing mechanistic insights and providing a new paradigm for the vaccine discovery and development process. Here, we review the 'known knowns' and 'known unknowns' of adjuvants, discuss these emerging concepts and highlight how our expanding knowledge about innate immunity and systems vaccinology are revitalizing the science and development of novel adjuvants for use in vaccines against COVID-19 and future pandemics.

390 citations