scispace - formally typeset
Search or ask a question
Author

Diptiman Chanda

Bio: Diptiman Chanda is an academic researcher from University of Alabama at Birmingham. The author has contributed to research in topics: Mesenchymal stem cell & Prostate cancer. The author has an hindex of 21, co-authored 35 publications receiving 1623 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Current knowledge in the field is analyzed, gained from both basic and clinical research, to provide new insights into the disease process, and potential approaches to treatment of pulmonary fibrosis.

221 citations

Journal ArticleDOI
TL;DR: The potential of genetically modified MSC, constitutively expressing interferon (IFN)-β, in an immunocompetent mouse model of prostate cancer lung metastasis is evaluated and a significant reduction in tumor volume in lungs is indicated following IFN-β-expressing MSC therapy.
Abstract: Cell-based therapy for cancer is a promising new field. Among cell types that can be used for this purpose, mesenchymal stem cells (MSCs) appear to hold great advantage for reasons including easier propagation in culture, possible genetic modification to express therapeutic proteins and preferential homing to sites of cancer growth upon in vivo transfer. The present study evaluated the potential of genetically modified MSC, constitutively expressing interferon (IFN)-β, in an immunocompetent mouse model of prostate cancer lung metastasis. A recombinant adeno-associated virus (rAAV) encoding mouse IFN-β was constructed and initially tested in vitro for high-level expression and bioactivity of the transgenic protein. MSCs were transduced by the rAAV-IFN-β or green fluorescent protein ex vivo and used as cellular vehicles to target lung metastasis of TRAMP-C2 prostate cancer cells in a therapy model. Cohorts of mice were killed on days 30 and 75 to determine the effect of therapy by measurement of tumor volume, histology, immunohistochemistry, enzyme-linked immunosorbent assay and flow cytometry. Results indicated a significant reduction in tumor volume in lungs following IFN-β-expressing MSC therapy. Immunohistochemistry of the lung demonstrated increased tumor cell apoptosis and decreased tumor cell proliferation and blood vessel counts. A significant increase in the natural kill cell activity was observed following IFN-β therapy correlating the antitumor effect. Systemic level of IFN-β was not significantly elevated from this targeted cell therapy. These data demonstrate the potential of MSC-based IFN-β therapy for prostate cancer lung metastasis.

190 citations

Journal ArticleDOI
TL;DR: The potential of adult MSC constitutively producing IFN‐α to reduce the growth of lung metastasis in melanoma is demonstrated, demonstrating a potential for cell‐based therapy of cancer.
Abstract: Adult stem cells represent a potential source for cell-based therapy of cancer. The present study evaluated the potential of bone marrow-derived mesenchymal stem cells (MSC), genetically modified to express interferon (IFN)-alpha, for the treatment of lung metastasis in an immunocompetent mouse model of metastatic melanoma. A recombinant adeno-associated virus (rAAV) 6 vector encoding IFN-alpha was used to transduce mouse bone marrow-derived MSC ex vivo. Expression and bioactivity of the transgenic protein from rAAV-transduced MSC were confirmed prior to in vivo studies. A lung metastasis model of melanoma was developed by i.v. injection of B16F10 cells into 8-week-old C57BL/6 mice. Ten days later, MSC transduced with rAAV-IFN-alpha or green fluorescent protein were intravenously injected. One cohort of mice was sacrificed to determine the effects of the therapy at an earlier time point, and another cohort was observed for long-term survival. Results indicated that systemic administration of MSC producing IFN-alpha reduced the growth of B16F10 melanoma cells and significantly prolonged survival. Immunohistochemistry analysis of the tumors from MSC-IFN-alpha-treated animals indicated an increase in apoptosis and a decrease in proliferation and blood vasculature. These data demonstrate the potential of adult MSC constitutively producing IFN-alpha to reduce the growth of lung metastasis in melanoma.

184 citations

Journal ArticleDOI
TL;DR: Findings further articulate that breast cancer subtypes differ not only in tumor characteristics but also in their metastatic behavior, thus raising the possibility that this knowledge could potentially be used in determining the appropriate strategy for follow-up of patients with newly diagnosed breast cancer.
Abstract: Objectives: The distant organs to which breast cancer preferentially metastasizes are of significant clinical importance. Methods: We explored the relationship between the clinicopathologic factors and the common sites of distant metastasis in 531 consecutive patients with advanced breast cancer. Results: Breast cancer subtype as a variable was significantly associated with all five common sites of relapse by multivariate analysis. The luminal tumors were remarkable for their significant bone-seeking phenotype and were less frequently observed in lung, brain, and pleural metastases and less likely to be associated with multiorgan relapse. The HER2 subtype demonstrated a significant liver-homing characteristic. African Americans were significantly less likely to have brain-only metastasis in patients with brain relapse. Conclusions: These findings further articulate that breast cancer subtypes differ not only in tumor characteristics but also in their metastatic behavior, thus raising the possibility that this knowledge could potentially be used in determining the appropriate strategy for follow-up of patients with newly diagnosed breast cancer.

180 citations

Journal ArticleDOI
TL;DR: In this article, a key role for plasmacytoid dendritic cells (pDC) in facilitating tumor growth through immunosuppression and aggressive osteolysis was identified.
Abstract: Elevated levels of plasmacytoid dendritic cells (pDC) have been reported in breast cancer patients, but the significance remains undefined. Using three immunocompetent mouse models of breast cancer bone metastasis, we identified a key role for pDC in facilitating tumor growth through immunosuppression and aggressive osteolysis. Following infiltration of macrophages upon breast cancer dissemination, there was a steady increase in pDC within the bone, which resulted in a sustained Th2 response along with elevated levels of regulatory T cells and myeloid-derived suppressor cells. Subsequently, pDC and CD4(+) T cells, producing osteolytic cytokines, increased with tumor burden, causing severe bone damage. Microcomputed tomography and histology analyses of bone showed destruction of femur and tibia. The therapeutic significance of this finding was confirmed by depletion of pDC, which resulted in decreased tumor burden and bone loss by activating tumor-specific cytolytic CD8(+) T cells and decreasing suppressor cell populations. Thus, pDC depletion may offer a novel adjuvant strategy to therapeutically influence breast cancer bone metastasis.

146 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The 11th edition of Harrison's Principles of Internal Medicine welcomes Anthony Fauci to its editorial staff, in addition to more than 85 new contributors.
Abstract: The 11th edition of Harrison's Principles of Internal Medicine welcomes Anthony Fauci to its editorial staff, in addition to more than 85 new contributors. While the organization of the book is similar to previous editions, major emphasis has been placed on disorders that affect multiple organ systems. Important advances in genetics, immunology, and oncology are emphasized. Many chapters of the book have been rewritten and describe major advances in internal medicine. Subjects that received only a paragraph or two of attention in previous editions are now covered in entire chapters. Among the chapters that have been extensively revised are the chapters on infections in the compromised host, on skin rashes in infections, on many of the viral infections, including cytomegalovirus and Epstein-Barr virus, on sexually transmitted diseases, on diabetes mellitus, on disorders of bone and mineral metabolism, and on lymphadenopathy and splenomegaly. The major revisions in these chapters and many

6,968 citations

Journal ArticleDOI
TL;DR: In this review, recent advances in bone scaffolds are highlighted and aspects that still need to be improved are discussed.

1,737 citations

Journal ArticleDOI
TL;DR: Here, a review of the natural drug delivery carriers that have provided the basis and inspiration for new drug delivery systems is reviewed.
Abstract: The exploitation of natural particulates, such as pathogens and mammalian cells, for drug delivery applications is a rapidly emerging field. Here, Yoo and colleagues discuss recent advances in the design of drug carriers based on natural particulates, provide an overview of their current development status and highlight the various applications and limitations of each approach.

1,050 citations

Journal ArticleDOI
TL;DR: How tumour-infiltrating immune cells contribute to the metastatic cascade is described and potential therapeutic strategies to target these cells are discussed.
Abstract: Metastatic disease is the major cause of death from cancer, and immunotherapy and chemotherapy have had limited success in reversing its progression. Data from mouse models suggest that the recruitment of immunosuppressive cells to tumours protects metastatic cancer cells from surveillance by killer cells, which nullifies the effects of immunotherapy and thus establishes metastasis. Furthermore, in most cases, tumour-infiltrating immune cells differentiate into cells that promote each step of the metastatic cascade and thus are novel targets for therapy. In this Review, we describe how tumour-infiltrating immune cells contribute to the metastatic cascade and we discuss potential therapeutic strategies to target these cells.

898 citations

Journal ArticleDOI
TL;DR: In this paper, the fundamental concepts of whole-organ engineering, including characterization of the extracellular matrix as a scaffold, methods for decellularization of vascular organs, potential cells to reseed such an acellular, naturally occurring three-dimensional biologic scaffold material that can then be seeded with selected cell populations.
Abstract: The definitive treatment for end-stage organ failure is orthotopic transplantation. However, the demand for transplantation far exceeds the number of available donor organs. A promising tissue-engineering/regenerative-medicine approach for functional organ replacement has emerged in recent years. Decellularization of donor organs such as heart, liver, and lung can provide an acellular, naturally occurring three-dimensional biologic scaffold material that can then be seeded with selected cell populations. Preliminary studies in animal models have provided encouraging results for the proof of concept. However, significant challenges for three-dimensional organ engineering approach remain. This manuscript describes the fundamental concepts of whole-organ engineering, including characterization of the extracellular matrix as a scaffold, methods for decellularization of vascular organs, potential cells to reseed such a scaffold, techniques for the recellularization process and important aspects regarding biore...

819 citations