scispace - formally typeset
Search or ask a question
Author

Dirk Grosenick

Other affiliations: Philips
Bio: Dirk Grosenick is an academic researcher from German National Metrology Institute. The author has contributed to research in topics: Diffuse optical imaging & Scattering. The author has an hindex of 22, co-authored 88 publications receiving 2271 citations. Previous affiliations of Dirk Grosenick include Philips.


Papers
More filters
Journal ArticleDOI
TL;DR: A laser-pulse mammograph capable of recording optical mammograms within approximately 3 min by measuring time-resolved transmittance at each of typically 1500 scan positions, 2.5 mm apart is developed.
Abstract: We have developed a laser-pulse mammograph capable of recording optical mammograms within ∼3 min by measuring time-resolved transmittance at each of typically 1500 scan positions, 2.5 mm apart. As a first application two patients who have tumors were investigated successfully. From measured distributions of times of flight of photons corrected for edge effects we derived (1) characteristic quantities, such as photon counts in selected time windows, to generate optical mammograms; (2) effective transport scattering and absorption coefficients of breast tissue at each scan position, assuming the breast to be homogeneous; and (3) optical properties of a selected tumor by applying the theory of diffraction of photon density waves by spherical inhomogeneity. Mammograms recorded at different lateral offsets between source and detector fiber were used to estimate the depth of inhomogeneities.

309 citations

Journal ArticleDOI
TL;DR: Effective tumor optical properties derived from a homogeneous model were used to deduce physiological information and all tumors exhibited increased total hemoglobin concentration and decreased or unchanged blood oxygen saturation compared with surrounding healthy tissue.
Abstract: Mammograms of 35 patients suspected of breast cancer were taken along craniocaudal and mediolateral projections with a dual-wavelength scanning laser pulse mammograph measuring time-resolved transmittance. Among 26 tumors known from routine clinical diagnostics, 17 tumors were detected retrospectively in optical mammograms. Effective tumor optical properties derived from a homogeneous model were used to deduce physiological information. All tumors exhibited increased total hemoglobin concentration and decreased or unchanged blood oxygen saturation compared with surrounding healthy tissue. Scatter plots based on a pixelwise analysis of individual mammograms were introduced and applied to represent correlations between characteristic quantities derived from measured distributions of times of flight of photons.

223 citations

Journal ArticleDOI
TL;DR: A comprehensive protocol for the performance assessment of photon migration instruments based on five criteria: accuracy, linearity, noise, stability, and reproducibility is proposed.
Abstract: We propose a comprehensive protocol for the performance assessment of photon migration instruments. The protocol has been developed within the European Thematic Network MEDPHOT (optical methods for medical diagnosis and monitoring of diseases) and is based on five criteria: accuracy, linearity, noise, stability, and reproducibility. This protocol was applied to a total of 8 instruments with a set of 32 phantoms, covering a wide range of optical properties.

176 citations

Journal ArticleDOI
TL;DR: The moment analysis may serve as a comparatively fast method for evaluating optical properties with sufficient accuracy and can be used, e.g., for on-line monitoring of optical properties of biological tissue.
Abstract: A novel method for the determination of the optical properties of tissue from time-domain measurements is presented. The data analysis is based on the evaluation of the first moment and the second centralized moment, i.e., the mean time of flight and the variance of the measured distribution of times of flight (DTOF) of photons injected by short (picosecond) laser pulses. Analytical expressions are derived for calculation of absorption and of reduced scattering coefficients from these moments by application of diffusion theory for infinite and semi-infinite homogeneous media. The proposed method was tested on experimental data obtained with phantoms, and results for absorption and reduced scattering coefficients obtained by the proposed method are compared with those obtained by fitting of the same data with analytical solutions of the diffusion equation. Furthermore, the accuracy of the moment analysis was investigated for a range of integration limits of the DTOF. The moment analysis may serve as a comparatively fast method for evaluating optical properties with sufficient accuracy and can be used, e.g., for on-line monitoring of optical properties of biological tissue.

138 citations

Journal ArticleDOI
TL;DR: The clinical results on functional properties of malignant and benign breast lesions compared to host tissue are reviewed and the various methods to improve contrast between healthy and diseased tissue are discussed, such as enhanced spectroscopic information, dynamic variations of functional properties, and pharmacokinetics of extrinsic contrast agents.
Abstract: Diffuse optical imaging and spectroscopy of the female breast is an area of active research. We review the present status of this field and discuss the broad range of methodologies and applications. Starting with a brief overview on breast physiology, the remodeling of vasculature and extracellular matrix caused by solid tumors is highlighted that is relevant for contrast in optical imaging. Then, the various instrumental techniques and the related methods of data analysis and image generation are described and compared including multimodality instrumentation, fluorescence mammography, broadband spectroscopy, and diffuse correlation spectroscopy. We review the clinical results on functional properties of malignant and benign breast lesions compared to host tissue and discuss the various methods to improve contrast between healthy and diseased tissue, such as enhanced spectroscopic information, dynamic variations of functional properties, pharmacokinetics of extrinsic contrast agents, including the enhanced permeability and retention effect. We discuss research on monitoring neoadjuvant chemotherapy and on breast cancer risk assessment as potential clinical applications of optical breast imaging and spectroscopy. Moreover, we consider new experimental approaches, such as photoacoustic imaging and long-wavelength tissue spectroscopy.

137 citations


Cited by
More filters
01 Mar 2007
TL;DR: An initiative to develop uniform standards for defining and classifying AKI and to establish a forum for multidisciplinary interaction to improve care for patients with or at risk for AKI is described.
Abstract: Acute kidney injury (AKI) is a complex disorder for which currently there is no accepted definition. Having a uniform standard for diagnosing and classifying AKI would enhance our ability to manage these patients. Future clinical and translational research in AKI will require collaborative networks of investigators drawn from various disciplines, dissemination of information via multidisciplinary joint conferences and publications, and improved translation of knowledge from pre-clinical research. We describe an initiative to develop uniform standards for defining and classifying AKI and to establish a forum for multidisciplinary interaction to improve care for patients with or at risk for AKI. Members representing key societies in critical care and nephrology along with additional experts in adult and pediatric AKI participated in a two day conference in Amsterdam, The Netherlands, in September 2005 and were assigned to one of three workgroups. Each group's discussions formed the basis for draft recommendations that were later refined and improved during discussion with the larger group. Dissenting opinions were also noted. The final draft recommendations were circulated to all participants and subsequently agreed upon as the consensus recommendations for this report. Participating societies endorsed the recommendations and agreed to help disseminate the results. The term AKI is proposed to represent the entire spectrum of acute renal failure. Diagnostic criteria for AKI are proposed based on acute alterations in serum creatinine or urine output. A staging system for AKI which reflects quantitative changes in serum creatinine and urine output has been developed. We describe the formation of a multidisciplinary collaborative network focused on AKI. We have proposed uniform standards for diagnosing and classifying AKI which will need to be validated in future studies. The Acute Kidney Injury Network offers a mechanism for proceeding with efforts to improve patient outcomes.

5,467 citations

Journal ArticleDOI
TL;DR: A review of methods for the forward and inverse problems in optical tomography can be found in this paper, where the authors focus on the highly scattering case found in applications in medical imaging, and to the problem of absorption and scattering reconstruction.
Abstract: We present a review of methods for the forward and inverse problems in optical tomography. We limit ourselves to the highly scattering case found in applications in medical imaging, and to the problem of absorption and scattering reconstruction. We discuss the derivation of the diffusion approximation and other simplifications of the full transport problem. We develop sensitivity relations in both the continuous and discrete case with special concentration on the use of the finite element method. A classification of algorithms is presented, and some suggestions for open problems to be addressed in future research are made.

2,609 citations

Journal ArticleDOI
TL;DR: The current state-of-the-art of diffuse optical imaging is reviewed, which is an emerging technique for functional imaging of biological tissue and recent work on in vivo applications including imaging the breast and brain is reviewed.
Abstract: We review the current state-of-the-art of diffuse optical imaging, which is an emerging technique for functional imaging of biological tissue. It involves generating images using measurements of visible or near-infrared light scattered across large (greater than several centimetres) thicknesses of tissue. We discuss recent advances in experimental methods and instrumentation, and examine new theoretical techniques applied to modelling and image reconstruction. We review recent work on in vivo applications including imaging the breast and brain, and examine future challenges.

1,237 citations

Journal ArticleDOI
TL;DR: Long-term experiments demonstrated that these quantum dots remain fluorescent after at least four months in vivo, using only quantum dots for detection.

1,153 citations

Journal ArticleDOI
TL;DR: The theoretical basis for near-infrared or diffuse optical spectroscopy (NIRS or DOS) is developed, and the basic elements of diffuse optical tomography (DOT) are outlined.
Abstract: This review describes the diffusion model for light transport in tissues and the medical applications of diffuse light. Diffuse optics is particularly useful for measurement of tissue hemodynamics, wherein quantitative assessment of oxy- and deoxy-hemoglobin concentrations and blood flow are desired. The theoretical basis for near-infrared or diffuse optical spectroscopy is developed, and the basic elements of diffuse optical tomography are outlined. We also discuss diffuse correlation spectroscopy, a technique whereby temporal correlation functions of diffusing light are transported through tissue and are used to measure blood flow. Essential instrumentation is described, and representative brain and breast functional imaging and monitoring results illustrate the workings of these new tissue diagnostics.

987 citations