scispace - formally typeset
Search or ask a question
Author

Dirk Montag

Bio: Dirk Montag is an academic researcher from Leibniz Institute for Neurobiology. The author has contributed to research in topics: Myelin & Neural cell adhesion molecule. The author has an hindex of 36, co-authored 71 publications receiving 4863 citations. Previous affiliations of Dirk Montag include ETH Zurich & Max Planck Society.


Papers
More filters
Journal ArticleDOI
14 Jun 2012-Nature
TL;DR: It is shown that different abnormalities in synaptic glutamate receptor expression can cause alterations in social interactions and communication, and it is proposed that appropriate therapies for autism spectrum disorders are to be carefully matched to the underlying synaptopathic phenotype.
Abstract: Autism spectrum disorders comprise a range of neurodevelopmental disorders characterized by deficits in social interaction and communication, and by repetitive behaviour. Mutations in synaptic proteins such as neuroligins, neurexins, GKAPs/SAPAPs and ProSAPs/Shanks were identified in patients with autism spectrum disorder, but the causative mechanisms remain largely unknown. ProSAPs/Shanks build large homo- and heteromeric protein complexes at excitatory synapses and organize the complex protein machinery of the postsynaptic density in a laminar fashion. Here we demonstrate that genetic deletion of ProSAP1/Shank2 results in an early, brain-region-specific upregulation of ionotropic glutamate receptors at the synapse and increased levels of ProSAP2/Shank3. Moreover, ProSAP1/Shank2(-/-) mutants exhibit fewer dendritic spines and show reduced basal synaptic transmission, a reduced frequency of miniature excitatory postsynaptic currents and enhanced N-methyl-d-aspartate receptor-mediated excitatory currents at the physiological level. Mutants are extremely hyperactive and display profound autistic-like behavioural alterations including repetitive grooming as well as abnormalities in vocal and social behaviours. By comparing the data on ProSAP1/Shank2(-/-) mutants with ProSAP2/Shank3αβ(-/-) mice, we show that different abnormalities in synaptic glutamate receptor expression can cause alterations in social interactions and communication. Accordingly, we propose that appropriate therapies for autism spectrum disorders are to be carefully matched to the underlying synaptopathic phenotype.

543 citations

Journal ArticleDOI
01 Jul 1994-Neuron
TL;DR: Observations suggest that MAG participates in the formation of the periaxonal cytoplasmic collar of oligodendrocytes and in the recognition between oligodendedrocyte processes and axons.

351 citations

Journal ArticleDOI
TL;DR: It is found that the N-terminal pE-formation is catalyzed by glutaminyl cyclase in vivo, and Aβ3(pE)–40/42 peptides seem to represent Aβ forms with exceptional potency for disturbing neuronal function.
Abstract: Because of their abundance, resistance to proteolysis, rapid aggregation and neurotoxicity, N-terminally truncated and, in particular, pyroglutamate (pE)-modified Abeta peptides have been suggested as being important in the initiation of pathological cascades resulting in the development of Alzheimer's disease. We found that the N-terminal pE-formation is catalyzed by glutaminyl cyclase in vivo. Glutaminyl cyclase expression was upregulated in the cortices of individuals with Alzheimer's disease and correlated with the appearance of pE-modified Abeta. Oral application of a glutaminyl cyclase inhibitor resulted in reduced Abeta(3(pE)-42) burden in two different transgenic mouse models of Alzheimer's disease and in a new Drosophila model. Treatment of mice was accompanied by reductions in Abeta(x-40/42), diminished plaque formation and gliosis and improved performance in context memory and spatial learning tests. These observations are consistent with the hypothesis that Abeta(3(pE)-42) acts as a seed for Abeta aggregation by self-aggregation and co-aggregation with Abeta(1-40/42). Therefore, Abeta(3(pE)-40/42) peptides seem to represent Abeta forms with exceptional potency for disturbing neuronal function. The reduction of brain pE-Abeta by inhibition of glutaminyl cyclase offers a new therapeutic option for the treatment of Alzheimer's disease and provides implications for other amyloidoses, such as familial Danish dementia.

342 citations

Journal ArticleDOI
TL;DR: Observations indicate an essential role for TN-R in the formation of perineuronal nets and in normal conduction velocity of optic nerve in mutant mice generated by homologous recombination using embryonic stem cells.
Abstract: Tenascin-R (TN-R), an extracellular matrix glycoprotein of the CNS, localizes to nodes of Ranvier and perineuronal nets and interacts in vitro with other extracellular matrix components and recognition molecules of the immunoglobulin superfamily. To characterize the functional roles of TN-R in vivo, we have generated mice deficient for TN-R by homologous recombination using embryonic stem cells. TN-R-deficient mice are viable and fertile. The anatomy of all major brain areas and the formation and structure of myelin appear normal. However, immunostaining for the chondroitin sulfate proteoglycan phosphacan, a high-affinity ligand for TN-R, is weak and diffuse in the mutant when compared with wild-type mice. Compound action potential recordings from optic nerves of mutant mice show a significant decrease in conduction velocity as compared with controls. However, at nodes of Ranvier there is no apparent change in expression and distribution of Na+ channels, which are thought to bind to TN-R via their beta2 subunit. The distribution of carbohydrate epitopes of perineuronal nets recognized by the lectin Wisteria floribunda or antibodies to the HNK-1 carbohydrate on somata and dendrites of cortical and hippocampal interneurons is abnormal. These observations indicate an essential role for TN-R in the formation of perineuronal nets and in normal conduction velocity of optic nerve.

241 citations

Journal ArticleDOI
TL;DR: The data indicate that brevican is not crucial for brain development but has restricted structural and functional roles, suggesting a complex cause for the LTP defect.
Abstract: Brevican is a brain-specific proteoglycan which is found in specialized extracellular matrix structures called perineuronal nets. Brevican increases the invasiveness of glioma cells in vivo and has been suggested to play a role in central nervous system fiber tract development. To study the role of brevican in the development and function of the brain, we generated mice lacking a functional brevican gene. These mice are viable and fertile and have a normal life span. Brain anatomy was normal, although alterations in the expression of neurocan were detected. Perineuronal nets formed but appeared to be less prominent in mutant than in wild-type mice. Brevican-deficient mice showed significant deficits in the maintenance of hippocampal long-term potentiation (LTP). However, no obvious impairment of excitatory and inhibitory synaptic transmission was found, suggesting a complex cause for the LTP defect. Detailed behavioral analysis revealed no statistically significant deficits in learning and memory. These data indicate that brevican is not crucial for brain development but has restricted structural and functional roles.

236 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Transected axons are common in the lesions of multiple sclerosis, and axonal transection may be the pathologic correlate of the irreversible neurologic impairment in this disease.
Abstract: Background Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system and is the most common cause of neurologic disability in young adults. Despite antiinflammatory or immunosuppressive therapy, most patients have progressive neurologic deterioration that may reflect axonal loss. We conducted pathological studies of brain tissues to define the changes in axons in patients with multiple sclerosis. Methods Brain tissue was obtained at autopsy from 11 patients with multiple sclerosis and 4 subjects without brain disease. Fourteen active multiple-sclerosis lesions, 33 chronic active lesions, and samples of normal-appearing white matter were examined for demyelination, inflammation, and axonal pathologic changes by immunohistochemistry and confocal microscopy. Axonal transection, identified by the presence of terminal axonal ovoids, was detected in all 47 lesions and quantified in 18 lesions. Results Transected axons were a consistent feature of the lesions of multiple sclerosis...

3,903 citations

Journal ArticleDOI
TL;DR: At a given time point of the disease, the patterns of demyelination were heterogeneous between patients, but were homogenous within multiple active lesions from the same patient, suggesting that MS may be a disease with heterogeneous pathogenetic mechanisms.
Abstract: Multiple sclerosis (MS) is a disease with profound heterogeneity in clinical course, neuroradiological appearance of the lesions, involvement of susceptibility gene loci, and response to therapy. These features are supported by experimental evidence, which demonstrates that fundamentally different processes, such as autoimmunity or virus infection, may induce MS-like inflammatory demyelinating plaques and suggest that MS may be a disease with heterogeneous pathogenetic mechanisms. From a large pathology sample of MS, collected in three international centers, we selected 51 biopsies and 32 autopsies that contained actively demyelinating lesions defined by stringent criteria. The pathology of the lesions was analyzed using a broad spectrum of immunological and neurobiological markers. Four fundamentally different patterns of demyelination were found, defined on the basis of myelin protein loss, the geography and extension of plaques, the patterns of oligodendrocyte destruction, and the immunopathological evidence of complement activation. Two patterns (I and II) showed close similarities to T-cell‐mediated or T-cell plus antibody‐mediated autoimmune encephalomyelitis, respectively. The other patterns (III and IV) were highly suggestive of a primary oligodendrocyte dystrophy, reminiscent of virus- or toxin-induced demyelination rather than autoimmunity. At a given time point of the disease—as reflected in autopsy cases—the patterns of demyelination were heterogeneous between patients, but were homogenous within multiple active lesions from the same patient. This pathogenetic heterogeneity of plaques from different MS patients may have fundamental implications for the diagnosis and therapy of this disease.

3,162 citations

Journal ArticleDOI
TL;DR: The thesis of this Review is that the encephalopathy of prematurity is a complex amalgam of primary destructive disease and secondary maturational and trophic disturbances.
Abstract: Brain injury in premature infants is of enormous public health importance because of the large number of such infants who survive with serious neurodevelopmental disability, including major cognitive deficits and motor disability. This type of brain injury is generally thought to consist primarily of periventricular leukomalacia (PVL), a distinctive form of cerebral white matter injury. Important new work shows that PVL is frequently accompanied by neuronal/axonal disease, affecting the cerebral white matter, thalamus, basal ganglia, cerebral cortex, brain stem, and cerebellum. This constellation of PVL and neuronal/axonal disease is sufficiently distinctive to be termed "encephalopathy of prematurity". The thesis of this Review is that the encephalopathy of prematurity is a complex amalgam of primary destructive disease and secondary maturational and trophic disturbances. This Review integrates the fascinating confluence of new insights into both brain injury and brain development during the human premature period.

2,039 citations

Journal ArticleDOI
TL;DR: The effects of subunit composition on NMDAR properties, synaptic plasticity and cellular mechanisms implicated in neuropsychiatric disorders are reviewed and could provide new therapeutic strategies against dysfunctions of glutamatergic transmission.
Abstract: NMDA receptors (NMDARs) are glutamate-gated ion channels and are crucial for neuronal communication. NMDARs form tetrameric complexes that consist of several homologous subunits. The subunit composition of NMDARs is plastic, resulting in a large number of receptor subtypes. As each receptor subtype has distinct biophysical, pharmacological and signalling properties, there is great interest in determining whether individual subtypes carry out specific functions in the CNS in both normal and pathological conditions. Here, we review the effects of subunit composition on NMDAR properties, synaptic plasticity and cellular mechanisms implicated in neuropsychiatric disorders. Understanding the rules and roles of NMDAR diversity could provide new therapeutic strategies against dysfunctions of glutamatergic transmission.

1,918 citations

Journal ArticleDOI
TL;DR: Deyelinated plaques in multiple sclerosis consists mostly of scar-type astrocytes and naked axons, but astroCytes inhibit the migration of both oligodendrocyte precursors and Schwann cells which must restrict their access to demyelinated axons.

1,833 citations