scispace - formally typeset
Search or ask a question
Author

Djordje Perić

Bio: Djordje Perić is an academic researcher from Swansea University. The author has contributed to research in topics: Finite element method & Constitutive equation. The author has an hindex of 37, co-authored 130 publications receiving 5234 citations. Previous affiliations of Djordje Perić include University of Wales & University College of Engineering.


Papers
More filters
Book
01 Jan 2008
TL;DR: In this article, the authors present a general numerical integration algorithm for elastoplastic constitutive equations, based on the von Mises model, which is used for the integration of the isotropically hardening deformation.
Abstract: Part One Basic concepts 1 Introduction 1.1 Aims and scope 1.2 Layout 1.3 General scheme of notation 2 ELEMENTS OF TENSOR ANALYSIS 2.1 Vectors 2.2 Second-order tensors 2.3 Higher-order tensors 2.4 Isotropic tensors 2.5 Differentiation 2.6 Linearisation of nonlinear problems 3 THERMODYNAMICS 3.1 Kinematics of deformation 3.2 Infinitesimal deformations 3.3 Forces. Stress Measures 3.4 Fundamental laws of thermodynamics 3.5 Constitutive theory 3.6 Weak equilibrium. The principle of virtual work 3.7 The quasi-static initial boundary value problem 4 The finite element method in quasi-static nonlinear solid mechanics 4.1 Displacement-based finite elements 4.2 Path-dependent materials. The incremental finite element procedure 4.3 Large strain formulation 4.4 Unstable equilibrium. The arc-length method 5 Overview of the program structure 5.1 Introduction 5.2 The main program 5.3 Data input and initialisation 5.4 The load incrementation loop. Overview 5.5 Material and element modularity 5.6 Elements. Implementation and management 5.7 Material models: implementation and management Part Two Small strains 6 The mathematical theory of plasticity 6.1 Phenomenological aspects 6.2 One-dimensional constitutive model 6.3 General elastoplastic constitutive model 6.4 Classical yield criteria 6.5 Plastic flow rules 6.6 Hardening laws 7 Finite elements in small-strain plasticity problems 7.1 Preliminary implementation aspects 7.2 General numerical integration algorithm for elastoplastic constitutive equations 7.3 Application: integration algorithm for the isotropically hardening von Mises model 7.4 The consistent tangent modulus 7.5 Numerical examples with the von Mises model 7.6 Further application: the von Mises model with nonlinear mixed hardening 8 Computations with other basic plasticity models 8.1 The Tresca model 8.2 The Mohr-Coulomb model 8.3 The Drucker-Prager model 8.4 Examples 9 Plane stress plasticity 9.1 The basic plane stress plasticity problem 9.2 Plane stress constraint at the Gauss point level 9.3 Plane stress constraint at the structural level 9.4 Plane stress-projected plasticity models 9.5 Numerical examples 9.6 Other stress-constrained states 10 Advanced plasticity models 10.1 A modified Cam-Clay model for soils 10.2 A capped Drucker-Prager model for geomaterials 10.3 Anisotropic plasticity: the Hill, Hoffman and Barlat-Lian models 11 Viscoplasticity 11.1 Viscoplasticity: phenomenological aspects 11.2 One-dimensional viscoplasticity model 11.3 A von Mises-based multidimensional model 11.4 General viscoplastic constitutive model 11.5 General numerical framework 11.6 Application: computational implementation of a von Mises-based model 11.7 Examples 12 Damage mechanics 12.1 Physical aspects of internal damage in solids 12.2 Continuum damage mechanics 12.3 Lemaitre's elastoplastic damage theory 12.4 A simplified version of Lemaitre's model 12.5 Gurson's void growth model 12.6 Further issues in damage modelling Part Three Large strains 13 Finite strain hyperelasticity 13.1 Hyperelasticity: basic concepts 13.2 Some particular models 13.3 Isotropic finite hyperelasticity in plane stress 13.4 Tangent moduli: the elasticity tensors 13.5 Application: Ogden material implementation 13.6 Numerical examples 13.7 Hyperelasticity with damage: the Mullins effect 14 Finite strain elastoplasticity 14.1 Finite strain elastoplasticity: a brief review 14.2 One-dimensional finite plasticity model 14.3 General hyperelastic-based multiplicative plasticity model 14.4 The general elastic predictor/return-mapping algorithm 14.5 The consistent spatial tangent modulus 14.6 Principal stress space-based implementation 14.7 Finite plasticity in plane stress 14.8 Finite viscoplasticity 14.9 Examples 14.10 Rate forms: hypoelastic-based plasticity models 14.11 Finite plasticity with kinematic hardening 15 Finite elements for large-strain incompressibility 15.1 The F-bar methodology 15.2 Enhanced assumed strain methods 15.3 Mixed u/p formulations 16 Anisotropic finite plasticity: Single crystals 16.1 Physical aspects 16.2 Plastic slip and the Schmid resolved shear stress 16.3 Single crystal simulation: a brief review 16.4 A general continuum model of single crystals 16.5 A general integration algorithm 16.6 An algorithm for a planar double-slip model 16.7 The consistent spatial tangent modulus 16.8 Numerical examples 16.9 Viscoplastic single crystals Appendices A Isotropic functions of a symmetric tensor A.1 Isotropic scalar-valued functions A.1.1 Representation A.1.2 The derivative of anisotropic scalar function A.2 Isotropic tensor-valued functions A.2.1 Representation A.2.2 The derivative of anisotropic tensor function A.3 The two-dimensional case A.3.1 Tensor function derivative A.3.2 Plane strain and axisymmetric problems A.4 The three-dimensional case A.4.1 Function computation A.4.2 Computation of the function derivative A.5 A particular class of isotropic tensor functions A.5.1 Two dimensions A.5.2 Three dimensions A.6 Alternative procedures B The tensor exponential B.1 The tensor exponential function B.1.1 Some properties of the tensor exponential function B.1.2 Computation of the tensor exponential function B.2 The tensor exponential derivative B.2.1 Computer implementation B.3 Exponential map integrators B.3.1 The generalised exponential map midpoint rule C Linearisation of the virtual work C.1 Infinitesimal deformations C.2 Finite strains and deformations C.2.1 Material description C.2.2 Spatial description D Array notation for computations with tensors D.1 Second-order tensors D.2 Fourth-order tensors D.2.1 Operations with non-symmetric tensors References Index

1,077 citations

Journal ArticleDOI
TL;DR: In this article, a simple four-node quadrilateral and an eight-node hexahedron for large strain analysis of nearly incompressible solids are proposed based on the concept of deviatoric/volumetric split and the replacement of the compatible deformation gradient with an assumed modified counterpart.

348 citations

Journal ArticleDOI
TL;DR: In this paper, the authors considered the modeling of the interaction of fluid flow with flexibly supported rigid bodies, governed by the incompressible Navier-Stokes equations and modelled by employing stabilised low order velocity-pressure finite elements.

311 citations

Journal ArticleDOI
TL;DR: In this paper, the friction forces are assumed to follow the Coulomb law, with a slip criterion treated in the context of a standard return mapping algorithm Consistent linearization of the field equations is performed which leads to a fully implicit scheme with non-symmetric tangent stiffness which preserves asymptotic quadratic convergence of the Newton-Raphson method.
Abstract: The friction forces are assumed to follow the Coulomb law, with a slip criterion treated in the context of a standard return mapping algorithm Consistent linearization of the field equations is performed which leads to a fully implicit scheme with non-symmetric tangent stiffness which preserves asymptotic quadratic convergence of the Newton-Raphson method

230 citations

Journal ArticleDOI
TL;DR: In this article, a constitutive modeling and computational treatment of finite deformation elasto-plasticity is examined employing logarithmic stretches as strain measures, which leads to a linear stress-strain relation and constant and isotropic elastic modulus in material setting.
Abstract: In the context of general isothermal processes, issues related to the constitutive modelling and computational treatment of finite deformation elasto-plasticity are examined employing logarithmic stretches as strain measures. A strain-energy function for isotropic elastic materials is proposed, which leads to a linear stress-strain relation and constant and isotropic elastic modulus in material setting. It is assumed that isotropy is maintained in the intermediate configuration which necessitates a representation of the plastic flow based on the scalar internal variables. By exploiting the main features of the present approach, expressed through the simple hyperelastic constitutive model in conjunction with notions of multiplicative decomposition of the deformation gradient and unstressed configuration, a computationally effective framework is formulated. It is pointed out that in this context, an algorithm could be proposed for rate-independent finite strain elasto-plasticity, which is exact for elastic processes and in the limit of non-hardening, deviatoric elasto-plasticity is in accordance with physical observations. Large elasto-plastic deformations at moderate elastic strains are examined within the approximation theory and displacement based finite element formulation of the boundary value problem proposed. Numerical analysis is performed for a realistic example capturing shear band localisation and the results are compared with experimental data.

194 citations


Cited by
More filters
BookDOI
17 Aug 2012
TL;DR: De Borst et al. as mentioned in this paper present a condensed version of the original book with a focus on non-linear finite element technology, including nonlinear solution strategies, computational plasticity, damage mechanics, time-dependent effects, hyperelasticity and large-strain elasto-plasticity.
Abstract: Built upon the two original books by Mike Crisfield and their own lecture notes, renowned scientist Rene de Borst and his team offer a thoroughly updated yet condensed edition that retains and builds upon the excellent reputation and appeal amongst students and engineers alike for which Crisfield's first edition is acclaimed. Together with numerous additions and updates, the new authors have retained the core content of the original publication, while bringing an improved focus on new developments and ideas. This edition offers the latest insights in non-linear finite element technology, including non-linear solution strategies, computational plasticity, damage mechanics, time-dependent effects, hyperelasticity and large-strain elasto-plasticity. The authors' integrated and consistent style and unrivalled engineering approach assures this book's unique position within the computational mechanics literature.

2,568 citations

Reference EntryDOI
15 Nov 2004
TL;DR: The mathematical structure of the contact formulation for finite element methods is derived on the basis of a continuum description of contact, and several algorithms related to spatial contact search and fulfillment of the inequality constraints at the contact interface are discussed.
Abstract: This paper describes modern techniques used to solve contact problems within Computational Mechanics. On the basis of a continuum description of contact, the mathematical structure of the contact formulation for finite element methods is derived. Emphasis is also placed on the constitutive behavior at the contact interface for normal and tangential (frictional) contact. Furthermore, different discretization schemes currently applied to solve engineering problems are formulated for small and finite strain problems. These include isoparametric interpolations, node-to-segment discretizations and also mortar and Nitsche techniques. Furthermore, several algorithms related to spatial contact search and fulfillment of the inequality constraints at the contact interface are discussed. Here, especially the penalty and Lagrange multiplier schemes are considered and also SQP- and linear-programming methods are reviewed. Keywords: contact mechanics; friction; penalty method; Lagrange multiplier method; contact algorithms; finite element method; finite deformations; discretization methods

1,761 citations

Journal ArticleDOI
TL;DR: In this paper, a review of continuum-based variational formulations for describing the elastic-plastic deformation of anisotropic heterogeneous crystalline matter is presented and compared with experiments.

1,573 citations

Journal ArticleDOI
TL;DR: In this paper, a new decohesion element with the capability of dealing with crack propagation under mixed-mode loading is proposed and demonstrated, which is used at the interface between solid finite elements to model the initiation and non-self-similar growth of delaminations in composite materials.
Abstract: A new decohesion element with the capability of dealing with crack propagation under mixed-mode loading is proposed and demonstrated. The element is used at the interface between solid finite elements to model the initiation and non-self-similar growth of delaminations in composite materials. A single relative displacement-based damage parameter is applied in a softening law to track the damage state of the interface and to prevent the restoration of the cohesive state during unloading. The softening law is applied in the three-parameter Benzeggagh-Kenane mode interaction criterion to predict mixed-mode delamination propagation. To demonstrate the accuracy of the predictions, steady-state delamination growth is simulated for quasi-static loading of various single mode and mixed-mode delamination test specimens and the results are compared with experimental data.

1,285 citations

01 Jan 2016
TL;DR: The electronic transport in mesoscopic systems is universally compatible with any devices to read, and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for reading electronic transport in mesoscopic systems. Maybe you have knowledge that, people have look numerous times for their favorite readings like this electronic transport in mesoscopic systems, but end up in harmful downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they juggled with some harmful bugs inside their computer. electronic transport in mesoscopic systems is available in our book collection an online access to it is set as public so you can get it instantly. Our book servers spans in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the electronic transport in mesoscopic systems is universally compatible with any devices to read.

1,220 citations