scispace - formally typeset
Search or ask a question
Author

Dmitry Chalikov

Bio: Dmitry Chalikov is an academic researcher from University of Melbourne. The author has contributed to research in topics: Surface wave & Wind wave. The author has an hindex of 22, co-authored 58 publications receiving 3088 citations. Previous affiliations of Dmitry Chalikov include University of Maryland, College Park & National Oceanic and Atmospheric Administration.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a new third-generation ocean wind wave model is presented, which is based on previously developed input and nonlinear interaction source terms and a new dissipation source term.
Abstract: A new third-generation ocean wind wave model is presented. This model is based on previously developed input and nonlinear interaction source terms and a new dissipation source term. It is argued that the dissipation source term has to be modeled using two explicit constituents. A low-frequency dissipation term analogous to wave energy loss due to oceanic turbulence is therefore augmented with a diagnostic high-frequency dissipation term. The dissipation is tuned for the model to represent idealized fetch-limited growth behavior. The new model results in excellent growth behavior from extremely short fetches up to full development. For intermediate to long fetches results are similar to those of WAM, but for extremely short fetches the present model presents a significant improvement (although the poor behavior of WAM appears to be related to correctable numerical constraints). The new model furthermore gives smoother results and appears less sensitive to numerical errors. Finally, limitations of...

516 citations

Journal ArticleDOI
TL;DR: A brief historical overview of numerical wind wave forecast modeling efforts at the National Centers for Environmental Prediction (NCEP) is presented, followed by an in-depth discussion of the new operational National Oceanic and Atmospheric Administration (NOAA) Wave Watch III (NWW3) wave forecast system as mentioned in this paper.
Abstract: A brief historical overview of numerical wind wave forecast modeling efforts at the National Centers for Environmental Prediction (NCEP) is presented, followed by an in-depth discussion of the new operational National Oceanic and Atmospheric Administration (NOAA) “WAVEWATCH III” (NWW3) wave forecast system. This discussion mainly focuses on a parallel comparison of the new NWW3 system with the previously operational Wave Model (WAM) system, using extensive buoy and European Remote Sensing Satellite-2 (ERS-2) altimeter data. The new system is shown to describe the variability of the wave height more realistically, with similar or smaller random errors and generally better correlation coefficients and regression slopes than WAM. NWW3 outperforms WAM in the Tropics and in the Southern Hemisphere, and they both show fairly similar behavior at northern high latitudes. Dissemination of NWW3 products, and plans for its further development, are briefly discussed.

328 citations

Journal ArticleDOI
TL;DR: In this article, a synergetic combination of statistical/machine learning and deterministic modeling within atmospheric models is presented, which uses neural networks as a statistical or machine learning technique for an accurate and fast emulation or statistical approximation of model physics parameterizations.
Abstract: A new approach based on a synergetic combination of statistical/machine learning and deterministic modeling within atmospheric models is presented. The approach uses neural networks as a statistical or machine learning technique for an accurate and fast emulation or statistical approximation of model physics parameterizations. It is applied to development of an accurate and fast approximation of an atmospheric longwave radiation parameterization for the NCAR Community Atmospheric Model, which is the most time consuming component of model physics. The developed neural network emulation is two orders of magnitude, 50–80 times, faster than the original parameterization. A comparison of the parallel 10-yr climate simulations performed with the original parameterization and its neural network emulations confirmed that these simulations produce almost identical results. The obtained results show the conceptual and practical possibility of an efficient synergetic combination of deterministic and statist...

162 citations

Journal ArticleDOI
TL;DR: In this paper, the spectral properties of wave drag for an arbitrary wave field were investigated in a 2D modeling of the statistical structure of the wave boundary layer (WBL) for elaboration of the general approach to 1-D modeling taking into account the wave drag.
Abstract: Results obtained in a 2-D modeling of the statistical structure of the wave boundary layer (WBL) are used for elaboration of the general approach to 1-D modeling taking into account the spectral properties of wave drag for an arbitrary wave field. In the case of the wave field described by the JONSWAP spectrum, the momentum and energy spectral density exchange, vertical profiles of the wave-induced momentum flux and dependence of total roughness parameter and drag coefficient on peak frequency are given. The reasons that the total roughness parameter increases with decreasing fetch are explained. The role of wind waves as an active element of the ocean-atmosphere dynamic system is also discussed.

123 citations


Cited by
More filters
Journal ArticleDOI
20 Mar 2003-Nature
TL;DR: It is found that surface momentum flux levels off as the wind speeds increase above hurricane force, contrary to surface flux parameterizations that are currently used in a variety of modelling applications, including hurricane risk assessment and prediction of storm motion, intensity, waves and storm surges.
Abstract: The transfer of momentum between the atmosphere and the ocean is described in terms of the variation of wind speed with height and a drag coefficient that increases with sea surface roughness and wind speed. But direct measurements have only been available for weak winds; momentum transfer under extreme wind conditions has therefore been extrapolated from these field measurements. Global Positioning System sondes have been used since 1997 to measure the profiles of the strong winds in the marine boundary layer associated with tropical cyclones. Here we present an analysis of these data, which show a logarithmic increase in mean wind speed with height in the lowest 200 m, maximum wind speed at 500 m and a gradual weakening up to a height of 3 km. By determining surface stress, roughness length and neutral stability drag coefficient, we find that surface momentum flux levels off as the wind speeds increase above hurricane force. This behaviour is contrary to surface flux parameterizations that are currently used in a variety of modelling applications, including hurricane risk assessment and prediction of storm motion, intensity, waves and storm surges.

1,314 citations

Book
01 Feb 2010
TL;DR: The SWAN wave model as discussed by the authors is a wave model based on linear wave theory (SWAN) for oceanic and coastal waters, and it has been shown to be effective in detecting ocean waves.
Abstract: 1. Introduction 2. Observation techniques 3. Description of ocean waves 4. Statistics 5. Linear wave theory (oceanic waters) 6. Waves in oceanic waters 7. Linear wave theory (coastal waters) 8. Waves in coastal waters 9. The SWAN wave model Appendices References Index.

874 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduce the concept of rogue waves, which is the name given by oceanographers to isolated large amplitude waves, that occur more frequently than expected for normal, Gaussian distributed, statistical events.

851 citations

01 Jan 2010
TL;DR: A 23-year database of calibrated and validated satellite altimeter measurements is used to investigate global changes in oceanic wind speed and wave height over this period and finds a general global trend of increasing values of windspeed and, to a lesser degree, wave height.
Abstract: Wind speeds over the world’s oceans have increased over the past two decades, as have wave heights. Studies of climate change typically consider measurements or predictions of temperature over extended periods of time. Climate, however, is much more than temperature. Over the oceans, changes in wind speed and the surface gravity waves generated by such winds play an important role. We used a 23-year database of calibrated and validated satellite altimeter measurements to investigate global changes in oceanic wind speed and wave height over this period. We find a general global trend of increasing values of wind speed and, to a lesser degree, wave height, over this period. The rate of increase is greater for extreme events as compared to the mean condition.

737 citations