scispace - formally typeset
Search or ask a question
Author

Dmitry M. Sonechkin

Other affiliations: Russian Academy of Sciences
Bio: Dmitry M. Sonechkin is an academic researcher from Shirshov Institute of Oceanology. The author has contributed to research in topics: Global warming & Climate change. The author has an hindex of 11, co-authored 54 publications receiving 1814 citations. Previous affiliations of Dmitry M. Sonechkin include Russian Academy of Sciences.


Papers
More filters
Journal ArticleDOI
10 Feb 2005-Nature
TL;DR: This reconstruction of Northern Hemisphere temperatures for the past 2,000 years is reconstructed by combining low-resolution proxies with tree-ring data, using a wavelet transform technique to achieve timescale-dependent processing of the data.
Abstract: A number of reconstructions of millennial-scale climate variability have been carried out in order to understand patterns of natural climate variability, on decade to century timescales, and the role of anthropogenic forcing These reconstructions have mainly used tree-ring data and other data sets of annual to decadal resolution Lake and ocean sediments have a lower time resolution, but provide climate information at multicentennial timescales that may not be captured by tree-ring data Here we reconstruct Northern Hemisphere temperatures for the past 2,000 years by combining low-resolution proxies with tree-ring data, using a wavelet transform technique to achieve timescale-dependent processing of the data Our reconstruction shows larger multicentennial variability than most previous multi-proxy reconstructions, but agrees well with temperatures reconstructed from borehole measurements and with temperatures obtained with a general circulation model According to our reconstruction, high temperatures--similar to those observed in the twentieth century before 1990--occurred around ad 1000 to 1100, and minimum temperatures that are about 07 K below the average of 1961-90 occurred around ad 1600 This large natural variability in the past suggests an important role of natural multicentennial variability that is likely to continue

1,573 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper developed two tree ringwidth chronologies (Qilian juniper, Sabina przewalskii Kom.) for the inland Heihe River Basin in arid northwest China using a large number of tree-ring samples (217 samples/92 trees) with accurate information about pith offsets based on Regional Curve Standardization (RCS) and standard dendrochronological (STD) methodologies.
Abstract: We developed two tree ring-width chronologies (Qilian juniper, Sabina przewalskii Kom.) for the inland Heihe River Basin in arid northwest China using a large number of tree-ring samples (217 samples/92 trees) with accurate information about pith offsets based on Regional Curve Standardization (RCS) and standard dendrochronological (STD) methodologies. Two 1422-year reconstructions of annual (August–July) streamflow for the upstream region of the Heihe River are presented. The STD and RCS reconstructions account for 53.4% and 57.2% of the actual streamflow variance during the period 1958–2006, respectively. Both reconstructions display considerable low frequency (multidecadal to multicentury) fluctuations, although the RCS based reconstruction is superior to the STD based reconstruction for retention of low-frequency trends. Low-flow years in ad 818–852, 1112–1196, 1453–1495 and 1680–1710, and high-flow periods in ad 868–1000, 1056–1094, 1228–1271, 1327–1440, 1510–1583 and 1877–2006 are detected in both r...

68 citations

Journal ArticleDOI
TL;DR: In this paper, a wavelet transform technique was used to analyze the surface air temperature time series of both hemispheres and the North Atlantic European area as well as the Southern Oscillation (SO) index time series.
Abstract: The surface air temperature time series of both hemispheres and the North Atlantic European area as well as the Southern Oscillation (SO) index time series were analysed using a wavelet transform technique. The values of the so-called singularity exponents of these series were estimated and compared with such estimations for some surrogate time series artificially created from the observed temperature series. It was concluded that the climate dynamics on interannual and interdecadal scales may be considered as a kind of classical Brownian motion although its consideration as a flicker-noise is also possible. The extracted temperature variations were shown to be closely coupled with the SO process. The wavelet-transformed SO series reveals itself as a whole self-similar “tree” the main branches of which are the appearances of the strongest El-Ninos of 1898 – 1899, 1941 – 1942, and 1982 – 1983. Similar “trees” can be seen in the wavelet-transformed temperature series. Thus, the extracted temperature variations were shown to be closely coupled with the SO process, and a decomposition of the current global climate dynamics into three climatic epochs (of about 40-year long) seems to be appropriate.

30 citations

Journal ArticleDOI
01 Feb 2011
TL;DR: In this paper, a tree-ring width network based on two new chronologies and four previously published chronologies was established, and the authors defined a dryness-wetness grade series with five grades of climate events inferred from anomalous year analysis.
Abstract: Qilian juniper (Juniperus przewalskii Kom.) is a widely distributed tree species growing on south-facing slopes in the northeastern Tibetan Plateau in arid northwestern China. We established a tree-ring width network based on two new chronologies and four previously published chronologies. Correlation and response function analyses demonstrate that precipitation positively influences radial growth. Despite of minor differences in local climate–growth relations, precipitation for the annual window between previous July and current June shows consistent positive correlations with ring width at all study sites. Similar to the so called ‘pointer year’ approach, ‘anomalous’ growth years were defined to extract extreme climate events for the period AD 1450–2006. We defined a dryness–wetness grade series with five grades of climate events inferred from anomalous year analysis. During the last 50 years, the frequency of wet events increased and that of drought events decreased noticeably, implying that the probability of occurrence of dry years in the northeastern Tibetan Plateau will further decrease in the future if regional warming continues. Combining our proxy records with a historical dryness–wetness record from eastern China, we mapped dryness–wetness patterns over large parts of China. By analyzing the atmospheric pressure patterns at the 850 hPa level over China for selected extreme event years, we found that the confluence of cold and hot air is a precondition for a flood event in the northeastern Tibetan Plateau. Thus, a counter-clockwise atmospheric circulation centered in south of Lake Baikal only occurs in flood event years.

22 citations

Journal ArticleDOI
TL;DR: The statistical significance of Global Atmospheric Oscillation (GAO) signals from monthly mean atmospheric pressure data at sea level at the nodes of a regular 5° × 5° grid covering the entire surface of the Earth was assessed in this paper, showing that statistically reliable GAO signals cover almost the entire tropical zone and they also appear at mid and high latitudes of both hemispheres.
Abstract: The statistical significance of Global Atmospheric Oscillation (GAO), whose main element is the well-known El Nino–Southern Oscillation in the equatorial Pacific, was assessed from monthly mean atmospheric pressure data at sea level at the nodes of a regular 5° × 5° grid covering the entire surface of the Earth The data were collected in 1920–2012 It was found that statistically reliable GAO signals cover almost the entire tropical zone and they also appear at mid- and high latitudes of both hemispheres

20 citations


Cited by
More filters
01 Jan 2007
TL;DR: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris.
Abstract: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris, Carlos Gay García, Clair Hanson, Hideo Harasawa, Kevin Hennessy, Saleemul Huq, Roger Jones, Lucka Kajfež Bogataj, David Karoly, Richard Klein, Zbigniew Kundzewicz, Murari Lal, Rodel Lasco, Geoff Love, Xianfu Lu, Graciela Magrín, Luis José Mata, Roger McLean, Bettina Menne, Guy Midgley, Nobuo Mimura, Monirul Qader Mirza, José Moreno, Linda Mortsch, Isabelle Niang-Diop, Robert Nicholls, Béla Nováky, Leonard Nurse, Anthony Nyong, Michael Oppenheimer, Jean Palutikof, Martin Parry, Anand Patwardhan, Patricia Romero Lankao, Cynthia Rosenzweig, Stephen Schneider, Serguei Semenov, Joel Smith, John Stone, Jean-Pascal van Ypersele, David Vaughan, Coleen Vogel, Thomas Wilbanks, Poh Poh Wong, Shaohong Wu, Gary Yohe

7,720 citations

Journal ArticleDOI
TL;DR: The authors used selected proxy-based reconstructions of different climate variables, together with state-of-the-art time series of natural forcings (orbital variations, solar activity variations, large tropical volcanic eruptions, land cover and greenhouse gases), underpinned by results from GCMs and Earth System Models of Intermediate Complexity (EMICs), to establish a comprehensive explanatory framework for climate changes from the mid-Holocene (MH) to pre-industrial time.

1,539 citations

Journal ArticleDOI
08 Mar 2013-Science
TL;DR: Recon reconstructions of the past 1500 years suggest that recent warming is unprecedented in that time, and regional and global temperature anomalies for the past 11,300 years from 73 globally distributed records are provided.
Abstract: Surface temperature reconstructions of the past 1500 years suggest that recent warming is unprecedented in that time. Here we provide a broader perspective by reconstructing regional and global temperature anomalies for the past 11,300 years from 73 globally distributed records. Early Holocene (10,000 to 5000 years ago) warmth is followed by ~0.7°C cooling through the middle to late Holocene (<5000 years ago), culminating in the coolest temperatures of the Holocene during the Little Ice Age, about 200 years ago. This cooling is largely associated with ~2°C change in the North Atlantic. Current global temperatures of the past decade have not yet exceeded peak interglacial values but are warmer than during ~75% of the Holocene temperature history. Intergovernmental Panel on Climate Change model projections for 2100 exceed the full distribution of Holocene temperature under all plausible greenhouse gas emission scenarios.

1,281 citations

Journal ArticleDOI
TL;DR: The results extend previous conclusions that recent Northern Hemisphere surface temperature increases are likely anomalous in a long-term context to at least the past 1,700 years, but with additional strong caveats.
Abstract: Following the suggestions of a recent National Research Council report [NRC (National Research Council) (2006) Surface Temperature Reconstructions for the Last 2,000 Years (Natl Acad Press, Washington, DC).], we reconstruct surface temperature at hemispheric and global scale for much of the last 2,000 years using a greatly expanded set of proxy data for decadal-to-centennial climate changes, recently updated instrumental data, and complementary methods that have been thoroughly tested and validated with model simulation experiments. Our results extend previous conclusions that recent Northern Hemisphere surface temperature increases are likely anomalous in a long-term context. Recent warmth appears anomalous for at least the past 1,300 years whether or not tree-ring data are used. If tree-ring data are used, the conclusion can be extended to at least the past 1,700 years, but with additional strong caveats. The reconstructed amplitude of change over past centuries is greater than hitherto reported, with somewhat greater Medieval warmth in the Northern Hemisphere, albeit still not reaching recent levels.

1,083 citations

Journal ArticleDOI
04 Sep 2014-Nature
TL;DR: An emerging framework links the intertropical convergence zone to the atmospheric energy balance and may account for ITCZ variations on timescales from years to geological epochs.
Abstract: Rainfall on Earth is most intense in the intertropical convergence zone (ITCZ), a narrow belt of clouds centred on average around six degrees north of the Equator. The mean position of the ITCZ north of the Equator arises primarily because the Atlantic Ocean transports energy northward across the Equator, rendering the Northern Hemisphere warmer than the Southern Hemisphere. On seasonal and longer timescales, the ITCZ migrates, typically towards a warming hemisphere but with exceptions, such as during El Nino events. An emerging framework links the ITCZ to the atmospheric energy balance and may account for ITCZ variations on timescales from years to geological epochs.

930 citations