scispace - formally typeset
Search or ask a question
Author

Dmitry Ovchinnikov

Bio: Dmitry Ovchinnikov is an academic researcher from École Polytechnique Fédérale de Lausanne. The author has contributed to research in topics: Monolayer & Semiconductor. The author has an hindex of 17, co-authored 34 publications receiving 5179 citations. Previous affiliations of Dmitry Ovchinnikov include University of Washington & Moscow Institute of Physics and Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors examined the methods used to synthesize transition metal dichalcogenides (TMDCs) and their properties with particular attention to their charge density wave, superconductive and topological phases, along with their applications in devices with enhanced mobility and with the use of strain engineering to improve their properties.
Abstract: Graphene is very popular because of its many fascinating properties, but its lack of an electronic bandgap has stimulated the search for 2D materials with semiconducting character. Transition metal dichalcogenides (TMDCs), which are semiconductors of the type MX2, where M is a transition metal atom (such as Mo or W) and X is a chalcogen atom (such as S, Se or Te), provide a promising alternative. Because of its robustness, MoS2 is the most studied material in this family. TMDCs exhibit a unique combination of atomic-scale thickness, direct bandgap, strong spin–orbit coupling and favourable electronic and mechanical properties, which make them interesting for fundamental studies and for applications in high-end electronics, spintronics, optoelectronics, energy harvesting, flexible electronics, DNA sequencing and personalized medicine. In this Review, the methods used to synthesize TMDCs are examined and their properties are discussed, with particular attention to their charge density wave, superconductive and topological phases. The use of TMCDs in nanoelectronic devices is also explored, along with strategies to improve charge carrier mobility, high frequency operation and the use of strain engineering to tailor their properties. Two-dimensional transition metal dichalcogenides (TMDCs) exhibit attractive electronic and mechanical properties. In this Review, the charge density wave, superconductive and topological phases of TMCDs are discussed, along with their synthesis and applications in devices with enhanced mobility and with the use of strain engineering to improve their properties.

3,436 citations

Journal ArticleDOI
11 Aug 2016-Nature
TL;DR: A large, osmotically induced current is observed produced from a salt gradient with an estimated power density of up to 106 watts per square metre—a current that can be attributed mainly to the atomically thin membrane of MoS2, thus demonstrating a self-powered nanosystem.
Abstract: Osmotic power generation is a promising renewable energy source. This study demonstrates the use of single-layer molybdenum disulfide (MoS2) nanopores as osmotic nanogenerators. The transport of water through a membrane scales inversely with membrane thickness, so atomically thin materials should provide the ideal medium to host the nanopores in an osmotic power generator. Aleksandra Radenovic and colleagues produced nanopores in two-dimensional MoS2 and, using a salt gradient across a single nanopore, generated a power output per area orders of magnitude greater than that previously reported for nanotubes. They also show that a chemical potential gradient across a single nanopore in MoS2 can generate enough power to operate a single-layer MoS2 transistor.

758 citations

Journal ArticleDOI
06 Apr 2015-ACS Nano
TL;DR: In this article, the growth of high-quality monolayer MoS2 with control over lattice orientation has been studied and shown to be composed of coalescing single islands with limited numbers of lattice orientations due to an epitaxial growth mechanism.
Abstract: Two-dimensional semiconductors such as MoS2 are an emerging material family with wide-ranging potential applications in electronics, optoelectronics, and energy harvesting. Large-area growth methods are needed to open the way to applications. Control over lattice orientation during growth remains a challenge. This is needed to minimize or even avoid the formation of grain boundaries, detrimental to electrical, optical, and mechanical properties of MoS2 and other 2D semiconductors. Here, we report on the growth of high-quality monolayer MoS2 with control over lattice orientation. We show that the monolayer film is composed of coalescing single islands with limited numbers of lattice orientation due to an epitaxial growth mechanism. Optical absorbance spectra acquired over large areas show significant absorbance in the high-energy part of the spectrum, indicating that MoS2 could also be interesting for harvesting this region of the solar spectrum and fabrication of UV-sensitive photodetectors. Even though t...

656 citations

Journal ArticleDOI
28 Jul 2014-ACS Nano
TL;DR: The fabrication of field-effect transistors based on single layers and bilayers of the semiconductor WS2 and the investigation of their electronic transport properties are reported, finding that the doping level strongly depends on the device environment and that long in situ annealing drastically improves the contact transparency.
Abstract: We report on the fabrication of field-effect transistors based on single layers and bilayers of the semiconductor WS2 and the investigation of their electronic transport properties. We find that the doping level strongly depends on the device environment and that long in situ annealing drastically improves the contact transparency, allowing four-terminal measurements to be performed and the pristine properties of the material to be recovered. Our devices show n-type behavior with a high room temperature on/off current ratio of similar to 10(6). They show clear metallic behavior at high charge carrier densities and mobilities as high as similar to 140 cm(2)/(V s) at low temperatures (above 300 cm(2)/(V s) in the case of bilayers). In the insulating regime, the devices exhibit variable range hopping, with a localization length of about 2 nm that starts to increase as the Fermi level enters the conduction band. The promising electronic properties of WS2, comparable to those of single layer MoS2 and WSe2, together with its strong spin-orbit coupling, make it interesting for future applications in electronic, optical, and valleytronic devices.

615 citations

Posted Content
TL;DR: The monolayer film is composed of coalescing single islands with limited numbers of lattice orientation due to an epitaxial growth mechanism, and local potential mapping along channels in field-effect transistors shows that the single-crystal MoS2 grains in the film are well connected, with interfaces that do not degrade the electrical conductivity.
Abstract: Two-dimensional semiconductors such as MoS2 are an emerging material family with wide-ranging potential applications in electronics, optoelectronics and energy harvesting. Large-area growth methods are needed to open the way to the applications. While significant progress to this goal was made, control over lattice orientation during growth still remains a challenge. This is needed in order to minimize or even avoid the formation of grain boundaries which can be detrimental to electrical, optical and mechanical properties of MoS2 and other 2D semiconductors. Here, we report on the uniform growth of high-quality centimeter-scale continuous monolayer MoS2 with control over lattice orientation. Using transmission electron microscopy we show that the monolayer film is composed of coalescing single islands that share a predominant lattice orientation due to an epitaxial growth mechanism. Raman and photoluminescence spectra confirm the high quality of the grown material. Optical absorbance spectra acquired over large areas show new features in the high-energy part of the spectrum, indicating that MoS2 could also be interesting for harvesting this region of the solar spectrum and fabrication of UV-sensitive photodetectors. Even though the interaction between the growth substrate and MoS2 is strong enough to induce lattice alignment, we can easily transfer the grown material and fabricate field-effect transistors on SiO2 substrates showing mobility superior to the exfoliated material.

604 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the methods used to synthesize transition metal dichalcogenides (TMDCs) and their properties with particular attention to their charge density wave, superconductive and topological phases, along with their applications in devices with enhanced mobility and with the use of strain engineering to improve their properties.
Abstract: Graphene is very popular because of its many fascinating properties, but its lack of an electronic bandgap has stimulated the search for 2D materials with semiconducting character. Transition metal dichalcogenides (TMDCs), which are semiconductors of the type MX2, where M is a transition metal atom (such as Mo or W) and X is a chalcogen atom (such as S, Se or Te), provide a promising alternative. Because of its robustness, MoS2 is the most studied material in this family. TMDCs exhibit a unique combination of atomic-scale thickness, direct bandgap, strong spin–orbit coupling and favourable electronic and mechanical properties, which make them interesting for fundamental studies and for applications in high-end electronics, spintronics, optoelectronics, energy harvesting, flexible electronics, DNA sequencing and personalized medicine. In this Review, the methods used to synthesize TMDCs are examined and their properties are discussed, with particular attention to their charge density wave, superconductive and topological phases. The use of TMCDs in nanoelectronic devices is also explored, along with strategies to improve charge carrier mobility, high frequency operation and the use of strain engineering to tailor their properties. Two-dimensional transition metal dichalcogenides (TMDCs) exhibit attractive electronic and mechanical properties. In this Review, the charge density wave, superconductive and topological phases of TMCDs are discussed, along with their synthesis and applications in devices with enhanced mobility and with the use of strain engineering to improve their properties.

3,436 citations

Journal ArticleDOI
30 Apr 2015-Nature
TL;DR: The preparation of high-mobility 4-inch wafer-scale films of monolayer molybdenum disulphide and tungsten disulPHide, grown directly on insulating SiO2 substrates, with excellent spatial homogeneity over the entire films are reported, a step towards the realization of atomically thin integrated circuitry.
Abstract: The large-scale growth of semiconducting thin films forms the basis of modern electronics and optoelectronics. A decrease in film thickness to the ultimate limit of the atomic, sub-nanometre length scale, a difficult limit for traditional semiconductors (such as Si and GaAs), would bring wide benefits for applications in ultrathin and flexible electronics, photovoltaics and display technology. For this, transition-metal dichalcogenides (TMDs), which can form stable three-atom-thick monolayers, provide ideal semiconducting materials with high electrical carrier mobility, and their large-scale growth on insulating substrates would enable the batch fabrication of atomically thin high-performance transistors and photodetectors on a technologically relevant scale without film transfer. In addition, their unique electronic band structures provide novel ways of enhancing the functionalities of such devices, including the large excitonic effect, bandgap modulation, indirect-to-direct bandgap transition, piezoelectricity and valleytronics. However, the large-scale growth of monolayer TMD films with spatial homogeneity and high electrical performance remains an unsolved challenge. Here we report the preparation of high-mobility 4-inch wafer-scale films of monolayer molybdenum disulphide (MoS2) and tungsten disulphide, grown directly on insulating SiO2 substrates, with excellent spatial homogeneity over the entire films. They are grown with a newly developed, metal-organic chemical vapour deposition technique, and show high electrical performance, including an electron mobility of 30 cm(2) V(-1) s(-1) at room temperature and 114 cm(2) V(-1) s(-1) at 90 K for MoS2, with little dependence on position or channel length. With the use of these films we successfully demonstrate the wafer-scale batch fabrication of high-performance monolayer MoS2 field-effect transistors with a 99% device yield and the multi-level fabrication of vertically stacked transistor devices for three-dimensional circuitry. Our work is a step towards the realization of atomically thin integrated circuitry.

1,499 citations

Journal ArticleDOI
TL;DR: A comprehensive treatment of the physics of such interfaces at the contact region is presented and recent progress towards realizing optimal contacts for two-dimensional materials is discussed.
Abstract: The performance of electronic and optoelectronic devices based on two-dimensional layered crystals, including graphene, semiconductors of the transition metal dichalcogenide family such as molybdenum disulphide (MoS2) and tungsten diselenide (WSe2), as well as other emerging two-dimensional semiconductors such as atomically thin black phosphorus, is significantly affected by the electrical contacts that connect these materials with external circuitry. Here, we present a comprehensive treatment of the physics of such interfaces at the contact region and discuss recent progress towards realizing optimal contacts for two-dimensional materials. We also discuss the requirements that must be fulfilled to realize efficient spin injection in transition metal dichalcogenides.

1,293 citations

Journal ArticleDOI
TL;DR: In this article, the intrinsic biochemical properties of reactive oxygen species (ROS) underlie the mechanisms that regulate various physiological functions of living organisms, and they play an essential role in regulating various physiological function.
Abstract: Reactive oxygen species (ROS) play an essential role in regulating various physiological functions of living organisms. The intrinsic biochemical properties of ROS, which underlie the mechanisms ne...

1,260 citations