scispace - formally typeset
Search or ask a question
Author

Dmitry Strekalov

Bio: Dmitry Strekalov is an academic researcher from Max Planck Society. The author has contributed to research in topics: Resonator & Whispering-gallery wave. The author has an hindex of 39, co-authored 140 publications receiving 6571 citations. Previous affiliations of Dmitry Strekalov include University of Erlangen-Nuremberg & California Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a two-photon optical imaging experiment was performed based on the quantum nature of the signal and idler photon pairs produced in spontaneous parametric down-conversion, where an aperture placed in front of a fixed detector is illuminated by the signal beam through a convex lens.
Abstract: A two-photon optical imaging experiment was performed based on the quantum nature of the signal and idler photon pairs produced in spontaneous parametric down-conversion. An aperture placed in front of a fixed detector is illuminated by the signal beam through a convex lens. A sharp magnified image of the aperture is found in the coincidence counting rate when a mobile detector is scanned in the transverse plane of the idler beam at a specific distance in relation to the lens.

1,651 citations

Journal ArticleDOI
TL;DR: Observations of unusual diffraction and interference by two-photon correlation measurements by spontaneous parametric down-conversion are reported.
Abstract: Observations of unusual diffraction and interference by two-photon correlation measurements are reported. The signal and idler beams produced by spontaneous parametric down-conversion are sent in different directions, and detected by two distant pointlike photon counting detectors. A double slit or a single slit is inserted into the signal beam. Interference-diffraction patterns are observed in coincidences by scanning the detector in the idler beam.

730 citations

Journal ArticleDOI
TL;DR: Low-threshold optical hyperparametric oscillations in a high-Q fluorite whispering gallery mode resonator are observed and it is demonstrated that, because of the narrow bandwidth of the resonator modes as well as the high efficiency of the resonate frequency conversion, the oscillations produce stable narrow-band beat-note of the pump, signal, and idler waves.
Abstract: We have observed low-threshold optical hyperparametric oscillations in a high-Q fluorite whispering gallery mode resonator. The oscillations result from the resonantly enhanced four-wave mixing occurring due to Kerr nonlinearity of the material. We demonstrate that, because of the narrow bandwidth of the resonator modes as well as the high efficiency of the resonant frequency conversion, the oscillations produce stable narrow-band beat-note of the pump, signal, and idler waves. A theoretical model for this process is described.

273 citations

Journal ArticleDOI
TL;DR: It is observed that conversion efficiencies of 9% at 30µW pump power in LiNbO3, as well as self-limiting effects at high powers.
Abstract: We demonstrate for the first time natural phase matching for optical frequency doubling in a high-Q whispering-gallery-mode resonator made of lithium niobate. A conversion efficiency of 9% is achieved at 30 microW in-coupled continuous wave pump power. The observed saturation pump power of 3.2 mW is almost 2 orders of magnitude lower than the state-of-the-art value. This suggests an application of our frequency doubler as a source of nonclassical light requiring only a low-power pump, which easily can be quantum noise limited. Our theoretical analysis of the three-wave mixing in a whispering-gallery-mode resonator provides the relative conversion efficiencies for frequency doubling in various modes.

250 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors consider the atomic dynamics and the optical response of the medium to a continuous-wave laser and show how coherently prepared media can be used to improve frequency conversion in nonlinear optical mixing experiments.
Abstract: Coherent preparation by laser light of quantum states of atoms and molecules can lead to quantum interference in the amplitudes of optical transitions. In this way the optical properties of a medium can be dramatically modified, leading to electromagnetically induced transparency and related effects, which have placed gas-phase systems at the center of recent advances in the development of media with radically new optical properties. This article reviews these advances and the new possibilities they offer for nonlinear optics and quantum information science. As a basis for the theory of electromagnetically induced transparency the authors consider the atomic dynamics and the optical response of the medium to a continuous-wave laser. They then discuss pulse propagation and the adiabatic evolution of field-coupled states and show how coherently prepared media can be used to improve frequency conversion in nonlinear optical mixing experiments. The extension of these concepts to very weak optical fields in the few-photon limit is then examined. The review concludes with a discussion of future prospects and potential new applications.

4,218 citations

Journal ArticleDOI
19 Nov 2004-Science
TL;DR: This work has shown that conventional bounds to the precision of measurements such as the shot noise limit or the standard quantum limit are not as fundamental as the Heisenberg limits and can be beaten using quantum strategies that employ “quantum tricks” such as squeezing and entanglement.
Abstract: Quantum mechanics, through the Heisenberg uncertainty principle, imposes limits on the precision of measurement. Conventional measurement techniques typically fail to reach these limits. Conventional bounds to the precision of measurements such as the shot noise limit or the standard quantum limit are not as fundamental as the Heisenberg limits and can be beaten using quantum strategies that employ “quantum tricks” such as squeezing and entanglement.

2,421 citations

Journal ArticleDOI
20 Dec 2007-Nature
TL;DR: This work reports a substantially different approach to comb generation, in which equally spaced frequency markers are produced by the interaction between a continuous-wave pump laser of a known frequency with the modes of a monolithic ultra-high-Q microresonator via the Kerr nonlinearity.
Abstract: Optical frequency combs provide equidistant frequency markers in the infrared, visible and ultraviolet, and can be used to link an unknown optical frequency to a radio or microwave frequency reference. Since their inception, frequency combs have triggered substantial advances in optical frequency metrology and precision measurements and in applications such as broadband laser-based gas sensing and molecular fingerprinting. Early work generated frequency combs by intra-cavity phase modulation; subsequently, frequency combs have been generated using the comb-like mode structure of mode-locked lasers, whose repetition rate and carrier envelope phase can be stabilized. Here we report a substantially different approach to comb generation, in which equally spaced frequency markers are produced by the interaction between a continuous-wave pump laser of a known frequency with the modes of a monolithic ultra-high-Q microresonator via the Kerr nonlinearity. The intrinsically broadband nature of parametric gain makes it possible to generate discrete comb modes over a 500-nm-wide span (approximately 70 THz) around 1,550 nm without relying on any external spectral broadening. Optical-heterodyne-based measurements reveal that cascaded parametric interactions give rise to an optical frequency comb, overcoming passive cavity dispersion. The uniformity of the mode spacing has been verified to within a relative experimental precision of 7.3 x 10(-18). In contrast to femtosecond mode-locked lasers, this work represents a step towards a monolithic optical frequency comb generator, allowing considerable reduction in size, complexity and power consumption. Moreover, the approach can operate at previously unattainable repetition rates, exceeding 100 GHz, which are useful in applications where access to individual comb modes is required, such as optical waveform synthesis, high capacity telecommunications or astrophysical spectrometer calibration.

1,950 citations

Journal Article
TL;DR: In this article, a class of π;-conjugated compounds that exhibit large δ (as high as 1, 250 × 10−50 cm4 s per photon) and enhanced two-photon sensitivity relative to ultraviolet initiators were developed and used to demonstrate a scheme for three-dimensional data storage which permits fluorescent and refractive read-out, and the fabrication of 3D micro-optical and micromechanical structures, including photonic-bandgap-type structures.
Abstract: Two-photon excitation provides a means of activating chemical or physical processes with high spatial resolution in three dimensions and has made possible the development of three-dimensional fluorescence imaging, optical data storage, and lithographic microfabrication. These applications take advantage of the fact that the two-photon absorption probability depends quadratically on intensity, so under tight-focusing conditions, the absorption is confined at the focus to a volume of order λ3 (where λ is the laser wavelength). Any subsequent process, such as fluorescence or a photoinduced chemical reaction, is also localized in this small volume. Although three-dimensional data storage and microfabrication have been illustrated using two-photon-initiated polymerization of resins incorporating conventional ultraviolet-absorbing initiators, such photopolymer systems exhibit low photosensitivity as the initiators have small two-photon absorption cross-sections (δ). Consequently, this approach requires high laser power, and its widespread use remains impractical. Here we report on a class of π;-conjugated compounds that exhibit large δ (as high as 1, 250 × 10−50 cm4 s per photon) and enhanced two-photon sensitivity relative to ultraviolet initiators. Two-photon excitable resins based on these new initiators have been developed and used to demonstrate a scheme for three-dimensional data storage which permits fluorescent and refractive read-out, and the fabrication of three-dimensional micro-optical and micromechanical structures, including photonic-bandgap-type structures.

1,833 citations

Journal ArticleDOI
29 Apr 2011-Science
TL;DR: A new optical frequency comb generation principle has emerged that uses parametric frequency conversion in high resonance quality factor (Q) microresonators, permitting an increased number of comb applications, such as in astronomy, microwave photonics, or telecommunications.
Abstract: The series of precisely spaced, sharp spectral lines that form an optical frequency comb is enabling unprecedented measurement capabilities and new applications in a wide range of topics that include precision spectroscopy, atomic clocks, ultracold gases, and molecular fingerprinting. A new optical frequency comb generation principle has emerged that uses parametric frequency conversion in high resonance quality factor (Q) microresonators. This approach provides access to high repetition rates in the range of 10 to 1000 gigahertz through compact, chip-scale integration, permitting an increased number of comb applications, such as in astronomy, microwave photonics, or telecommunications. We review this emerging area and discuss opportunities that it presents for novel technologies as well as for fundamental science.

1,660 citations