scispace - formally typeset
Search or ask a question
Author

Dmytro Mishkin

Bio: Dmytro Mishkin is an academic researcher from Czech Technical University in Prague. The author has contributed to research in topics: Epipolar geometry & Computer science. The author has an hindex of 18, co-authored 33 publications receiving 3092 citations.

Papers
More filters
Proceedings ArticleDOI
18 Jun 2018
TL;DR: DeblurGAN achieves state-of-the art performance both in the structural similarity measure and visual appearance and is 5 times faster than the closest competitor - Deep-Deblur.
Abstract: We present DeblurGAN, an end-to-end learned method for motion deblurring. The learning is based on a conditional GAN and the content loss. DeblurGAN achieves state-of-the art performance both in the structural similarity measure and visual appearance. The quality of the deblurring model is also evaluated in a novel way on a real-world problem - object detection on (de-)blurred images. The method is 5 times faster than the closest competitor - Deep-Deblur [25]. We also introduce a novel method for generating synthetic motion blurred images from sharp ones, allowing realistic dataset augmentation. The model, code and the dataset are available at https://github.com/KupynOrest/DeblurGAN

1,147 citations

Posted Content
TL;DR: DeblurGAN as mentioned in this paper is an end-to-end learned method for motion deblurring based on a conditional GAN and the content loss, which achieves state-of-the-art performance both in the structural similarity measure and visual appearance.
Abstract: We present DeblurGAN, an end-to-end learned method for motion deblurring. The learning is based on a conditional GAN and the content loss . DeblurGAN achieves state-of-the art performance both in the structural similarity measure and visual appearance. The quality of the deblurring model is also evaluated in a novel way on a real-world problem -- object detection on (de-)blurred images. The method is 5 times faster than the closest competitor -- DeepDeblur. We also introduce a novel method for generating synthetic motion blurred images from sharp ones, allowing realistic dataset augmentation. The model, code and the dataset are available at this https URL

503 citations

Proceedings Article
01 Jan 2016
TL;DR: Performance is evaluated on GoogLeNet, CaffeNet, FitNets and Residual nets and the state-of-the-art, or very close to it, is achieved on the MNIST, CIFAR-10/100 and ImageNet datasets.
Abstract: Layer-sequential unit-variance (LSUV) initialization - a simple method for weight initialization for deep net learning - is proposed. The method consists of the two steps. First, pre-initialize weights of each convolution or inner-product layer with orthonormal matrices. Second, proceed from the first to the final layer, normalizing the variance of the output of each layer to be equal to one. Experiment with different activation functions (maxout, ReLU-family, tanh) show that the proposed initialization leads to learning of very deep nets that (i) produces networks with test accuracy better or equal to standard methods and (ii) is at least as fast as the complex schemes proposed specifically for very deep nets such as FitNets (Romero et al. (2015)) and Highway (Srivastava et al. (2015)). Performance is evaluated on GoogLeNet, CaffeNet, FitNets and Residual nets and the state-of-the-art, or very close to it, is achieved on the MNIST, CIFAR-10/100 and ImageNet datasets.

416 citations

Proceedings Article
30 May 2017
TL;DR: HardNet as mentioned in this paper introduces a loss for metric learning, which maximizes the distance between the closest positive and closest negative examples in the batch, which works well for both shallow and deep convolutional network architectures.
Abstract: We introduce a loss for metric learning, which is inspired by the Lowe's matching criterion for SIFT. We show that the proposed loss, that maximizes the distance between the closest positive and closest negative example in the batch, is better than complex regularization methods; it works well for both shallow and deep convolution network architectures. Applying the novel loss to the L2Net CNN architecture results in a compact descriptor named HardNet. It has the same dimensionality as SIFT (128) and shows state-of-art performance in wide baseline stereo, patch verification and instance retrieval benchmarks.

321 citations

Journal ArticleDOI
TL;DR: It is shown that the use of 128 × 128 pixel images is sufficient to make qualitative conclusions about optimal network structure that hold for the full size Caffe and VGG nets, and an order of magnitude faster than with the standard 224 pixel images.

266 citations


Cited by
More filters
Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Book ChapterDOI
08 Oct 2016
TL;DR: In this paper, the forward and backward signals can be directly propagated from one block to any other block, when using identity mappings as the skip connections and after-addition activation.
Abstract: Deep residual networks have emerged as a family of extremely deep architectures showing compelling accuracy and nice convergence behaviors. In this paper, we analyze the propagation formulations behind the residual building blocks, which suggest that the forward and backward signals can be directly propagated from one block to any other block, when using identity mappings as the skip connections and after-addition activation. A series of ablation experiments support the importance of these identity mappings. This motivates us to propose a new residual unit, which makes training easier and improves generalization. We report improved results using a 1001-layer ResNet on CIFAR-10 (4.62 % error) and CIFAR-100, and a 200-layer ResNet on ImageNet. Code is available at: https://github.com/KaimingHe/resnet-1k-layers.

7,398 citations

Posted Content
TL;DR: This work proposes a small DNN architecture called SqueezeNet, which achieves AlexNet-level accuracy on ImageNet with 50x fewer parameters and is able to compress to less than 0.5MB (510x smaller than AlexNet).
Abstract: Recent research on deep neural networks has focused primarily on improving accuracy. For a given accuracy level, it is typically possible to identify multiple DNN architectures that achieve that accuracy level. With equivalent accuracy, smaller DNN architectures offer at least three advantages: (1) Smaller DNNs require less communication across servers during distributed training. (2) Smaller DNNs require less bandwidth to export a new model from the cloud to an autonomous car. (3) Smaller DNNs are more feasible to deploy on FPGAs and other hardware with limited memory. To provide all of these advantages, we propose a small DNN architecture called SqueezeNet. SqueezeNet achieves AlexNet-level accuracy on ImageNet with 50x fewer parameters. Additionally, with model compression techniques we are able to compress SqueezeNet to less than 0.5MB (510x smaller than AlexNet). The SqueezeNet architecture is available for download here: this https URL

5,904 citations

Journal ArticleDOI
TL;DR: A broad survey of the recent advances in convolutional neural networks can be found in this article, where the authors discuss the improvements of CNN on different aspects, namely, layer design, activation function, loss function, regularization, optimization and fast computation.

3,125 citations

Journal ArticleDOI
TL;DR: This review, which focuses on the application of CNNs to image classification tasks, covers their development, from their predecessors up to recent state-of-the-art deep learning systems.
Abstract: Convolutional neural networks CNNs have been applied to visual tasks since the late 1980s. However, despite a few scattered applications, they were dormant until the mid-2000s when developments in computing power and the advent of large amounts of labeled data, supplemented by improved algorithms, contributed to their advancement and brought them to the forefront of a neural network renaissance that has seen rapid progression since 2012. In this review, which focuses on the application of CNNs to image classification tasks, we cover their development, from their predecessors up to recent state-of-the-art deep learning systems. Along the way, we analyze 1 their early successes, 2 their role in the deep learning renaissance, 3 selected symbolic works that have contributed to their recent popularity, and 4 several improvement attempts by reviewing contributions and challenges of over 300 publications. We also introduce some of their current trends and remaining challenges.

2,366 citations